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Polymers Grafted onto Strongly Adsorbing Surfaces in Poor Solvents:
Stretching, Fission, Phase Separation, and Globular Micelles in 2D
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Using both analytic theory and computer simulation we study the stretching along the surface of
a strongly adsorbed polymer chain. In marked contrast to the case of nonadsorbed chains we show
that the polymer does not undergo a Rayleigh instability. Instead it deforms steadily into a lens
shape. Our results have dramatic consequences for submonolayer films formed from grafted chains.
We show that strongly adsorbed chains do not form “octopus” or pinned micelles. Instead they fuse
into compact islands, which in the limit of high grafting density can form a continuous network.
[S0031-9007(99)08783-9]
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The subject of polymers grafted to surfaces has r
ceived considerable attention during the past decade [
Grafting has enabled studies of polymeric distortion an
presents a number of novel problems. On the expe
imental front grafting of polymers is now reasonably
straightforward and the development of techniques, su
as atomic force microscopy, has allowed the direct stud
of polymerically grafted surfaces and single polyme
chains on the scale of a few angstroms. Grafted pol
mers have a number of practical applications in co
loidal stabilization, diblock copolymer microphases, dru
delivery, and surface coatings. Much of the attention
both experimental and theoretical, has focused on t
case of polymers in good solvents, where the chai
are swollen. Considerably less attention has been plac
upon the case of poor solvents. In poor solvents, su
as air, isolated chains want to avoid contact with th
solvent. An isolated chain in 3D in a bad solvent thu
forms a roughly spherical globule of radiusR , aN1y3,
where a is the monomer size andN is the number of
monomers. The stretching of such chains was studi
originally by Halperin and Zhulina [2] who argued tha
at weak extensions the globule deforms into an ellips
and then into a cylinder. At a critical extension the
polymer undergoes a sharp first-order transition into
“ball and chain” configuration. This transition is a mani
festation of the Rayleigh instability for a liquid cylinder
[3,4]; i.e., the polymer can decrease its surface ener
by breaking into a ball and a thin filament. This insta
bility has consequences for chains grafted to nonadso
ing surfaces in a poor solvent. In this case the chai
fuse to form “octopus” surface micelles or pinned micelle
[5–10] which consist of a central core globule connecte
by several thin tethers to the surface. However, whenev
the surface is strongly adsorbing we find that a very di
ferent picture emerges.

For strong surface adsorption an isolated chain forms
flat pancake of radiusR , aN1y2 and heighta, effectively
trapping the chain in 2D. Our aim is to examine th
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stretching deformation of this 2D system and to sho
that it is very different from the 3D case. In particula
there is no sharp shape transition as a function of cha
stretching and the chain remains more or less unifor
in shape. We use four approaches to show this. O
is analytic theory, one is numerical, and the other tw
are computer simulations. We then show how this nov
chain deformation affects the interaction of two grafte
chains [11]. In the strongly adsorbed case we show th
there are no octopus micelles—the chains can fuse, b
only to form globular micelles with no corona. This has
dramatic consequences for strongly adsorbed monola
films, which we predict should be much more uniform tha
their weakly adsorbed counterparts.

We begin by considering the stretching of a single cha
in the x direction along the surface, with the end-to-en
distance specified asd ­ 2w. The stretching involves
two free energy penalties. One is the creation of a
extra interface between the polymer and the solvent. Th
can be quantified by a line energy which is equal to th
perimeter of the drop multiplied by the line tensionL.
In generalL ­ lkTya, wherel is a constant of order
unity. The second term is the deformation entropy o
the polymer chain. We will show later that this is smal
except for strong deformations, so we ignore it in ou
initial calculation. The initial problem is then to calculate
the shape which minimizes the perimeter of our globu
for constant stretching distanced. Let the equation of
one interface of the drop beysxd. The perimeter of the
drop is thenP ­ 4

Rw
0 dx

p
1 1 sdyydxd2. Introducing a

Lagrange multiplier1yr to account for the fixed area of
the drop leads us to minimize the functional

F ­
Z w

0
dx

q
1 1 sdyydxd2 2 r21y . (1)

Taking the functional derivative yields a differential equa
tion for the drop shape,rsdydxd fy0s1 1 y02d21y2g ­ 21
subject to the boundary conditionsy0 ­ 0 at x ­ 0 and
y ­ 0 at x ­ w, where the prime meansdydx. The
© 1999 The American Physical Society 2701
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boundary conditiony ­ 0 is the natural one—it says that
the top half of the globule meets the bottom half at a poin
Integrating yields the solutionfy 1 sr2 2 w2d1y2g2 1

x2 ­ r2, i.e., a part of a circle with centersss0, 2sr2 2

w2d1y2ddd and radiusr. The globule is thus lens shaped
We can test this by carrying out a numerical brute forc
minimization of the perimeter at constant area [Fig. 1(a
for a given stretching distance. This does indeed yield
lens shape. This should be contrasted to the result for
[Fig. 1(b)] which exhibits a Rayleigh instability.

The area of the globule isA ­ 2w2fsqd, where
fsqd ; q22 sin21sqd 2 sq22 2 1d1y2 and q ; wyr

s0 , q , 1d. q describes the flatness of the lens: a sma
q indicates a very flat lens with the drop shape bein
very close to a rectangle. The area must be equal to
area of the undistorted droppR2

0 , giving one equation.
The perimeter isP ­ 4w sin21sqdq21. These equations
can be written in a form which gives the perimeter an
stretching distance2w parametrically in terms ofq.

w ­ R0

r
p

2fsqd
P ­ 4R0q21

r
p

2fsqd
sin21sqd . (2)

In the limit of weak stretchingsw 2 R0 ø R0d this be-
comesP ­ 2pR0 1 pR21

0 sw 2 R0d2 while for strong
stretchingw ¿ R0 we obtain P ­ 4w, i.e., the result
for a long rectangle. The corresponding force lawsF ­
1
2 LdPydw are interesting. For weak stretching we ob
tain linear responseF ­ LpR21

0 sw 2 R0d. However, for

FIG. 1. The shape of a polymer droplet stretched a fixe
distance. In (a) is the 2D result of a numerical minimization o
the perimeter of the droplet at constant area. In (b) is a cro
section of the 3D result of minimization of the area at fixe
volume. Note that in this case a Rayleigh instability occu
and the droplet takes the shape of a sphere connected to
tether points by two cylinders of zero radius. In (c) we sho
the result of Monte Carlo simulation for a 200 monomer chai
stretched a distance of 50 units. After equilibrium was reach
the system was run for107 Monte Carlo steps per monomer and
100 images of the chain were plotted. This yields an avera
shape close to the zero temperature lens shape in (a) but w
some thermal rounding.
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strong stretching we obtainF ­ 2L (i.e., a constant). The
crossover between these two regimes occurs atw ø 2.5R0.
This implies that beyond a critical force ofFcrit ­ 2L the
line tension cannot resist the applied force and the glob
stretches indefinitely. However, in this regime, wherew
is significantly larger thanR0, the entropy of chain defor-
mation becomes important. This provides a free ener
penalty ofU ø kTysNa2d s4w2d ­ 4kTyspR2

0dw2 and a
force of F ­ 4kTyspR2

0dw. Hence there are two force
regimes. For weak stretchingw , 2.5R0, the line tension
dominates the response to the force and the response is
ear. At stronger stretchingw . 2.5R0, the entropic force
comes into play. At these extensionsdFydw is dominated
by the entropic part and the line tension provides a co
stant background. The slope of the force curves,dwydF,
is very different in the two regimes. The ratio of the slope
for weak and strong stretching isøl21s4yp2dayR0 ø 1.
Thus the slope is much smaller initially. Note that th
force contributed by the line tension is still very high, eve
in the regime where the entropic part dominatesdFydw.
Indeed it is not untilw ­ lpR2

0y2a ­ lNay2 that the
entropic stretching begins to dominate the free energy.
this regime the chain is stretched to its full extension a
our assumption of a Hookean restoring force breaks dow

The analysis just carried out is valid in the limit of zer
temperature; i.e., it neglects the effect of thermal fluctu
tions on the overall shape of the chain. In order to s
if our conclusions remain valid when thermal effects a
introduced, we have carried out two different and total
independent Monte Carlo computer simulations of this sy
tem. These are both lattice based and use Hookean spri
a square lattice, local nearest-neighbor interactions, and
Metropolis algorithm. In both at most one monomer ca
occupy each lattice site. We show results here only f
one simulation, which uses a Hookean spring energy b
tween neighboring monomers of1

2 kr2 with k ­ 0.6kT and
a local bond energy between contacting monomers of1kT .
The other simulation produces similar results. We ha
checked explicitly, by plotting the radius of gyration o
the polymer as a function of temperature that our cha
is below theu point. In the simulation an initially un-
stretched collapsed chain, tethered at one end, is subje
to a force at the other end and then equilibrated. The fo
is then increased slightly and again the system is equ
brated. This process is then repeated. The simulatio
produce the droplet shapes and force the curve shown
Figs. 1(c) and 2. Both of these simulations confirm th
the above picture of a more or less uniform lens-shap
droplet is correct, although naturally some thermal flu
tuations are imposed on top of the overall shape. The
fluctuations mean that at intermediate stretching the dr
resembles a map of Japan. Figure 2 also shows clearly
two different stretching regimes. In the particular case
a 200 monomer chain the boundary between these regim
should lie atd ø 5R0 ­ 5

p
Nyp ­ 40, in good agree-

ment with the Monte Carlo data.
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FIG. 2. The extension (in lattice constantsa) versus force
curve (in units ofkTa21) for a 200 monomer chain from the
Monte Carlo simulation. Note the two linear regimes, one
low force, dominated by line tension and the other at high for
dominated by chain stretching. The images are snapshots of
chain at different extensions. Note that the chain often exhib
a blobby configuration; i.e., thermal fluctuations imposed up
the lens shape of Fig. 1(a) are important. For each force a to
of 2.5 3 106 Monte Carlo steps per monomer were attempted

Thus we have two main conclusions for the stretchin
of a single chain on a strongly adsorbing surface. The fi
is that the chain extends to take a fairly uniform shap
i.e., it does not undergo a ball-and-chain or Rayleig
instability. This is in marked contrast to the weakl
adsorbing or 3D case. The second conclusion is th
there are two force regimes, both with approximate
linear response, but with no sudden jumps between the
Before we consider extensions and implications of the
conclusions we discuss briefly the results of an earl
study of the problem [12]. Wittkopet al. have carried
out a Monte Carlo simulation of this system using a fixe
extension and have measured the force using a no
“jump attempt” method. They find that the polymer doe
undergo a Rayleigh instability, in marked contrast to o
claim. We cannot say precisely why the four method
we have used disagree so strongly with the conclusi
of their study. One of many possibilities is that th
pictures generated in Ref. [12] are of chains which a
not equilibrated. Indeed if we take a chain and apply
steadily increasing force but do not equilibrate the cha
between force increments, we can readily get the polym
to form a ball and chain. This, however, is not th
equilibrium shape. Another possibility is that in Ref. [12
an attractive potential with a range of three lattice sit
is used. For a large number of monomers this shou
be equivalent to our contact-only model. However,
Ref. [12] 100 monomers are used and in that case
substantial fraction of the chain is influenced by eac
monomer. This “long range” effect might give rise to
Rayleigh instability for short chains.
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FIG. 3. Monte Carlo results for a pair of 500 monomer chain
The chains begin in (a) as roughly circular pancakes separa
by a distance of 100. They are then brought together (so
points) at a fixed rate until they fuse at a distance of 30 (
After further collision they are separated at the same fix
rate (empty circles) until at a distance of 120 they under
fission (h).

Although the above single chain results are of fund
mental importance in understanding the deformation
polymers in 2D it is the case of two or more chains th
is relevant in practical problems of grafted chains at su
faces. Indeed the original motivation of this work was
extend the octopus micelle problem to strongly adsorbi
surfaces. To do this we need to examine the case of t
tethered polymers separated by a distanceX. If X is very
large we expect that the two chains will form individua
circular pancakes of radiusR0. However, at some smaller
separationXc the chains will want to fuse. Our aim here
is to find when this occurs and the shape of the fused gl
ule. The second question can be answered immediat
The fused globule will be lens shaped with the radiusR0

in Eq. (2) replaced byR2 ­
p

2 R0 and with w ­ Xy2.
We can show that at fusion the entropic free energy
negligible compared to the line energy. Thus to find th
critical distance we need to equate the perimeter of

FIG. 4. The perimeter versus separation distance for
scenario shown in Fig. 3. Here the “perimeter” is defined
p ­ s2 2 ndy2, where n is the number of nearest-neighbo
contact per monomer. Very clear evidence of hysteresis c
be seen.
2703
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FIG. 5. Results from a Monte Carlo simulation of
400 polymer chains each of 200 monomers on a500 3
500 lattice. This image is taken after106 Monte Carlo steps
per monomer. There is clear evidence for formation o
globular surface micelles, but there are no octopus micelle
i.e., no long tethers. The dynamics of this system become ve
slow at long times so this picture is only an approximation o
the “final” state of the system.

fused globule to the two perimeters of the individual pan
cakes. This yields a critical value ofqc ­ 0.481 or a criti-
cal distance ofXc ­ 6.022R0; i.e., the chains fuse across
several pancake radii. At this critical distance the aspe
ratio of the lens is2ys0dy2w ­ q21 2 sq22 2 1d1y2 ­
0.2566. Note thatXc is the distance at which the free en
ergies of the fused and separated states are equal. Th
two states are, however, separated by a very large e
ergy barrier. Given a long enough waiting time the tran
sition will occur atXc. However, in practice the transition
may occur well away fromXc, and the system will
show substantial hysteresis. This can be seen in Mon
Carlo simulations of a two-chain system (Figs. 3 and 4
Here the tethered ends are first placed far apart and th
slowly moved together at a rate of two lattice sites pe
106 attempted moves per monomer. The process is th
reversed.

Finally we consider how a system of chains grafted to
surface behaves. In the 3D case or no or weak adsorpt
[5–10,13] what is found is a number of octopus or pinne
micelles, with thin tethers connecting the micelle cores
the surface. In theory chains which are widely separat
2704
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can fuse to form one micelle and hence the surface
very unevenly coated by chains. The 2D case of stron
adsorption should be very different. We have shown th
chains can fuse only when they are of order a six cha
radii apart. When they do fuse they should not form
tethers but should form more or less uniform globula
micelles. This implies that a surface coated with suc
chains should have a much more uniform appearance th
one coated by weakly adosrbing chains. This can b
readily shown by Monte Carlo simulation (Fig. 5).

In conclusion we have shown that the deformation of
strongly adsorbed polymer chain in a poor solvent is ve
different from the weakly adsorbed case. In particula
the 2D chain does not undergo a Rayleigh instability, an
there are no sharp jumps in the force curve. Howeve
many questions remain, especially the effect of hystere
upon chain-chain interactions.
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