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Compression of a polymer chain by a small obstacle: The effect of fluctuations
on the escape transition

J. Ennis, E. M. Sevick, and D. R. M. Williams
Research School of Chemistry and Research School of Physical Sciences and Engineering, Australian National Universit

Canberra, ACT 0200, Australia
~Received 21 April 1999!

We describe the escape transition of an ideal chain compressed between finite-sized obstacles. Three dif-
ferent theoretical methods are used and each provides a similar description of the escape transition, as predicted
by earlier and less detailed mean-field theories. The first two methods show that thermal fluctuations near the
transition can blur what was previously described as a sharp transition. The last method is an exact calculation
of the partition function that shows unambiguously the character of the escape transition. This exact calculation
overcomes the inherent uncertainties associated with previous theory and computer simulation.
@S1063-651X~99!04911-9#

PACS number~s!: 36.20.Ey, 61.25.Hq, 46.32.1x
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I. INTRODUCTION

One of the most vigorous research areas in modern
condensed matter physics over the past decade has bee
imaging and manipulation of individual polymer chain
@1–3#. This has been made possible by advances in mic
copy, particularly in fluorescence microscopy, atomic fo
microscopy, and optical-magnetic tweezers, and has led
number of investigations of single macromolecules, parti
larly those of biological origin, such as DNA and acti
These kind of experiments have inspired new topics for t
oretical and computational study. One recent topic is
compression of a surface-tethered polymer chain by an
stacle that is not much larger than the unperturbed ch
This can occur by compressing a chain that is end-tethere
a surface with an atomic force microscope~AFM! tip, or by
the impaction of a membrane-tethered biopolymer by a
lular object.

The deformation of a polymer that is compressed betw
two infinite planar plates is well understood: the chain d
forms uniformly within the narrowing slit and the force th
the chain imposes on the compressing plates grows m
tonically @4,5#. However, the compression of an end-tethe
chain by a finite-sized obstacle is very different: the ch
deforms nonuniformly and there can be a jump in the co
pression force@6–15#. When compressed weakly by a finite
sized obstacle, the chain remains fully confined or ‘‘impr
oned’’ under the obstacle. However, at intermedi
compressions, when the compression energy is high,
chain can reduce its overall energy by forming a stretc
umbilical tether from the grafting point to the edge of t
disk so that the remaining monomers in the chain have ‘
caped’’ from underneath the compressing obstacle@6–15#. A
jump in the force exerted by the chain upon the obstacl
one signature of the transition from an imprisoned chain t
partially escaped one. There can be a significant energ
barrier to escape depending upon the radius of the obs
relative to the size of the chain. This barrier arises from
extra energy needed to stretch the chain to the edge o
disk so that at least one monomer can escape. When
barrier is large, i.e., when the disk size is significantly larg
PRE 601063-651X/99/60~6!/6906~13!/$15.00
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than the chain size, but not larger than the fully extend
length of the chain, then the problem can be cast as a fi
order transition between two ‘‘states’’ of the chain: impri
oned and escaped.

A recent series of theory and computer simulation pap
have described this escape transition, the chain energy
the compressive force of end-tethered chains under finite
stacles. The initial papers were theoretical and conside
chains in good solvent which were compressed by flat-en
circular cylinders and round-ended cylinders@7–9#. Later the
theory was extended to tilted, flat-ended obstacles and i
chains@6#. Implicit to these early theory papers was the a
sumption of single state occupancy, i.e., at any given co
pression, the chain was assumed to reside exclusively in
escaped or in the imprisoned state. This simplifying assum
tion is not valid whenever the difference in energies betwe
the two states is small, particularly near the escape transi
Several simulation studies have more recently appeared@10–
14#. While most of these studies confirm the existence
chain escape from underneath the obstacle, the simulat
do not recover the sharpness of the transition that was
dicted by the mean-field treatment. Indeed, the descriptio
the force profile at or near the escape transition is in qu
tion. The mean-field treatments predict a sharp, discont
ous drop in compressive force, while a number of prepri
have interpreted computer simulation results in terms o
flat or constant force profile through the transition region

In this paper we present calculations of the force pro
~and other quantities! near the escape transition that refi
the coarse-grained mean-field descriptions, are consis
with previous simulations, but differ from some previous i
terpretations of the data. Because most of the physics of
problem is contained in the ideal chain case, where there
no excluded volume interactions between monomers, an
this is also the simplest case to examine, we focus only u
ideal chains in this paper. Our description is constructed
ing three different and independent approaches. The first
proach, described in the following section, is a simple tw
state model which, albeit approximate, provides analy
force profiles which are comparable with recent simulatio
The second approach used is described in Sec. III and
6906 © 1999 The American Physical Society
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PRE 60 6907COMPRESSION OF A POLYMER CHAIN BY A SMALL . . .
sists of stochastically generating ‘‘squashed’’ chain confi
rations using computer simulation. And finally, in Sec.
we numerically evaluate the partition function for finite-siz
chains underneath finite-sized obstacles. This last calcula
is limited only by the numerical precision of the comput
and allows us to study the escape transition for finite cha
via a procedure that is essentially exact. This and the o
approaches of the paper show that a jump in the force pro
does occur with compression.

II. TWO-STATE MODEL AND THE EFFECT
OF FLUCTUATIONS

We consider a chain ofN statistical monomers, each o
size a. The chain is ideal, end-tethered to a grafting pla
and has a natural size that scales asaN1/2. We impose a
finite-sized disk of radiusL, larger than the size of the chai
but smaller than the elongated dimension of the chain,aN,
centered over the grafting point of the chain. The separa
distance between the obstacle and grafting surface isH. As H
is decreased, the chain is compressed and we refer toH as
the compression distance. If the radius is sufficiently lar
we can consider all chain configurations to be partition
into two distinct states: imprisoned and escaped.

The free energy of the imprisoned chain, confined who
between the plane and compressing cylinder is@6#
Fimprison/kBT5Na2/H2, where here, and in the remaind
of the section we neglect numerical prefactors. The free
ergy of an escaped chain is comprised of the compres
energy ofm monomers in the tethered umbilical,ma2/H2,
and the stretching penalty of the umbilical, stretched to
edge of the cylinder,L2/(ma2). Those monomers that hav
escaped from underneath the cylinder suffer a neglig
free-energy penalty. Under thermodynamic equilibrium,
chain will shuffle or readjust the number of monomers in
tether so as to minimize its energy, and consequently,
energy of the escaped state isFescaped/kBT52L/H. In the
previous theoretical treatments, the chain fluctuates wi
each state; however, at a given compression the chain alw
resides in the state of lowest energy. That is, the popula
of each state is quantized, being either 1 or 0. At we
compressions, or largeH, the imprisoned state has lowe
energy,Fimprison,Fescapeand all chains are imprisoned. A
the chain is compressed, orH reduced, the imprisoned sta
energy increases until at a critical compression,H*
5Na2/2L, the energy of the two states are identic
Fimprison5Fescape. As the chain is compressed beyondH* ,
the system jumps suddenly from one state to the ot
Across this jump, the free energy is constant, but the ra
size of the chain and the force transmitted to the obstacle
discontinuous. This two-state model, without fluctuations
tween states, is the basis of the early theory papers@6–9#.
However, near the transition the difference in the ene
between the states is small~of orderkBT), and hence, both
states will be populated to a substantial degree. The tra
tion will thus often be more gradual than that suggested
the early theory papers and in accordance with recent si
lation studies.

We can extend the two-state model to include fluctuati
between states, allowing both states to be simultaneo
populated at any given compression. In the usual kind
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experiment, where one has only a single chain compres
under a single obstacle this means that the chain spen
certain fraction of its time imprisoned and the remainder
its time escaped. It is of course also possible to imag
many chains, each compressed under an obstacle with a
tion of the chains escaped. In the compression case we
ply have a two-state system in which each state can be p
lated, much like the simple two-state models of ato
ubiquitous in atomic physics courses.

The mixing between the two states can be estimated
the partition function, written asZ5exp(2Fescape/kBT)
1exp(2Fimprison/kBT). This is not an exact representation
the partition function as it ignores some prefactors associa
with the relative phase space volumes of the two states; h
ever, it is a reasonable representation in the spirit of
two-state model. The free energy of the total system is t
F52kBT ln Z and the force exerted by the chain on t
obstacle is

f 52
]F

]H
52kBTLH22~2H* /H1g!/~11g!, ~1!

whereg[exp@22LH21(12H* /H)#. This force law changes
from f 54kBTLH* H23, at L@H@H* to a weaker force
law, f 52kBTL/H2, for compression distancesH!H* . How
sharply this crossover occurs asH is varied throughH* de-
pends upon the functiong, which is just the relative popula
tion of the two states. In particular,g must change rapidly
nearH5H* in order for the transition to be sharp. Exami
ing g it is clear this will occur when the obstacle radius
much larger than the critical height,L/H* @1 or equiva-
lently whenL@N1/2a; that is, when the disk radius is muc
greater than the unperturbed chain size.

Figure 1~a! is a scaled plot of the force profiles, predicte
from Eq. ~1!, versus the compression distance for three d
ference obstacle radii. It is clear that for an obstacle of
mensionless radiusL/H* 5100, compression leads to an e
cape transition that is very sharp, and that for sma
obstacles, as for exampleL/H* 510.0, a transition is still
evident, although it is less sharp. For an obstacle of dim
sionless radiusL/H* 52.0 the escape transition has almo
disappeared. In general, for a reasonably sharp transition
require obstacles of large radius,L/H* .10, in agreement
with recent simulation results@13,14#. These force curves ar
also reminiscent of those obtained in previous compu
simulations@10–12#.

This two-state technique can also be used to calculate
radial size as well as the maximum extent of the chain in
vertical direction~or its height!, for the system. The averag
maximum radial extent for the chain is

^Rmax&5~11g!21~A2LH* 1gL1gA2LH* 2HL !, ~2!

while the average maximum extent in the vertical direction

^zmax&5~11g!21~H1gA2LH* 2HL !. ~3!

These expressions are obtained from the expected size
confined random walk, and the escaped random w
weighted by the relative populations in each case. Figu
1~b! and 1~c! are plots of the maximal radial size and max
mal height, respectively, versus the compression dista
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FIG. 1. Predictions of the two-state model with fluctuations for a cylinder of radiusL compressing an end-tethered chain agains
grafting plane at variable compression distanceH. Predictions are shown for cylinders of three different dimensionless radii:L/H* 5100
shown in solid lines,L/H* 510 in dashed lines, andL/H* 52 in dotted lines. The compression distance, or the height of the slit betw
obstacle and grafting plane, is scaled by the critical compression distance,H* . The predicted quantities versus compression distance ar~a!
force, in units ofkT/H* and scaled byL/H* ~b! maximal radial extent of the chain, scaled byALH* , ~c! maximal height of the chain, scale
by yL/H* , and~d! fraction of monomers that have escaped from underneath the obstacle. In each of these, the escape transition
by sharp changes in the measured quantities atH/H* 51 whenever the obstacle radius is large, i.e.,L/H* 5100. But when the obstacle
radius is smallest,L/H* 52, the measured quantities change gradually with compression distance, and the sharp transition has dis
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These mirror what is seen in simulations, but again the tr
sition only becomes sharp wheng changes rapidly, i.e., whe
the obstacle radius is sufficiently large,L/H* .10. Finally
we can calculate the fraction of monomers escaped from
der the obstacle. This is

^Nescaped/N&5@12H/~2H* !#g/~11g! ~4!

and is plotted in Fig. 1~d! versus compression distanc
Again, we see that the fraction of escaped monom
changes nearly discontinuously for large obstacle radii
more gradually for smaller obstacles.

This two-state model is, of course, approximate. Bu
provides descriptions that are comparable to simulation
it allows us to understand the results simply in terms of t
states. A more rigorous approach is to evaluate the comp
partition function of the chain, explicitly including all de
grees of freedom of the chain. This is done in the followi
two sections, where we evaluate the partition function s
chastically and numerically.
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III. STOCHASTIC EVALUATION OF THE
PARTITION FUNCTION

A common technique used in statistical mechanics for
evaluation of partition function and associated averag
quantities is to generate configurations stochastically o
computer. Since the initial theoretical studies@6–9#, a num-
ber of these computer simulations have appeared in the
erature@10–14#. All of these have been stochastic simul
tions that generate configurations of chains end-tethe
underneath a cylindrical obstacle using the Metropolis Mo
Carlo method. In this method, successive configurations
constructed through biased, local moves of monomers wi
the chain. This method can be time consuming as the re
ation time~or Rouse time! for a chain ofN monomers scales
asN2. Thus many local weighted monomer moves must
made to generate a large number of chains with indepen
configurations. Moreover, there can be a significan
(.kBT) energy barrier between the imprisoned and esca
states, which may further frustrate the Metropolis sampl
of configurational space. This barrier arises from the ex
energy needed to stretch the chain to the edge of the cylin
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PRE 60 6909COMPRESSION OF A POLYMER CHAIN BY A SMALL . . .
so that at least one monomer can escape and becomes
significant as the radius of the obstacle is made larger@6–8#.

However, if the chain is ideal and modeled as a rand
walk, then we can generate independent configurations
cessively and in an unbiased way, sampling configura
space uniformly. Under high compression, severe entro
barriers restrict the sampling of configurations; however,
formation can be gleaned cheaply at moderate compres
The partition function for such a chain in the presence
hard walls isZN(H)5(all configurationsexp(2U/kBT), where the
sum is over all possible configurations of the end-tethe
chain ofN monomers. Since the walls are infinitely hard a
monomer-monomer interactions are absent, this sum red
to the sum over all allowed chain configurations, each
equal weighting, i.e.,ZN(H)5number of allowed configura
tions. By ‘‘allowed configurations’’ we mean those that d
not penetrate or intersect the grafting plane or compres
obstacle. The Helmholtz free energy isF52kBT ln ZN(H),
and all of the averages in the system can be calculated
averaging over the configurations.

We implement this using a more symmetrical geome
than the grafting plane and compressing disk of the previ
section. Instead, we take two cylinders, each of radiusR,
whose flat ends are separated by a distanceH. A chain is
placed in the space between the flat ends of the cylind
with its end centered and fixed midpoint between the cy
ders. We construct each chain by ‘‘growing’’ it from the fir
fixed monomer on a cubic lattice. Each consecutive mo
mer is placed discretely and randomly in one of the six cu
lattice sites lying adjacent to the previous monomer’s latt
site. If at any point, the chain collides with one of the cyli
ders, then that configuration is rejected and we begin gr
ing a new chain. An allowed configuration is a random wa
of N cubic lattice steps which does not intersect the cy
ders. Of course we cannot generate all of the allowed c
figurations in this way; there are simply too many. Howev
since the free energy is only defined up to a constant
clear that we can replace the partition function defined ab
by a new partition functionZN8 (H)[ZN(H)/ZN(`), which is
simply the fraction of random walks~out of all possible ran-
dom walks! that do not penetrate the walls. We can estim
this by makingT attempts at generating a random walk
thatZN8 (H)5Q/T, whereQ is the number of successful ran
dom walks, that is random walks ofN steps which do not
penetrate the boundaries. Provided our number of attemp
large, the quantityF52kBT ln(Q/T) is a good approxima-
tion to the free energy. Moreover, our successful rand
walks represent an unbiased sample of the chain config
tions over which we can construct descriptive averages, s
as the average maximal radial extent of the chain and
average maximal height of the chain.

It is important to ensure that we have constructed an
equate sampling of configuration space such that the frac
of successful walks,Q/T, is representative of the entire con
figurational space of the chain. First, we can fixT, the num-
ber of attempted chain growths and count the number
successful random walks,Q. This has the advantage that
very high compression almost all of the walks we start t
minate after only a few steps and the program becomes
fast at high compressions. However, if the number of s
cessful walks,Q, is small, then the sampling of the config
ore
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rational space may be inadequate. Instead we can fixQ and
increaseT until we get enough successes. This reduces
scatter at high compressions, but tends to increase it at w
compressions where the configurational space is larger
chain configurations can vary more widely. We found tha
combination of these two techniques gives the best res
For a chain ofN510 000 monomers, we ensure that we ha
at least 5000 successful random walks, as well as at l
10 000 attempted walks. This produces reasonable sam
sizes and averages. However, the minimum number of s
cessful random walks becomes insufficient and very diffic
to obtain at very small compressions where successful
dom walks become very rare. At such high compression
necessary to bias the sampling technique, which we do
do here.

This stochastic method allows us to generate many latt
based chains, confined between the flat ends of cylinder
radius L550, 120, and 1000 lattice units and separate
variable distance,H, apart. Figure 2 shows four typical cha
configurations from both top and side views, sandwiched
tween two cylinders, at weak compression orH5110 lattice
units, and at strong compression orH530 units. Note that
the weakly compressed chains are imprisoned: they
barely distorted from their isotropic trajectories. Howev
the strongly compressed chains have escaped through
formation of highly stretched, and radially oriented umbilic
tethers. These chains, along with at least 5000 others ge
ated at each specified compression distance are used to
struct averaged chain properties, namely, the chain’s free
ergy, maximal radial extent, and maximal height, as
function of compression.

Figure 3~a! is the average maximal height of the chai
measured as the distance from the tethered end, located a

FIG. 2. Configurations of chains withN5104, constructed on a
cubic lattice with one end tethered centrally at the midpoint
tween the flat ends of two cylinders of radiusL5120 lattice units
and separated a distanceH. Shown are the top and side views whe
the transparent cylinders are in~a! weak compression,H5110
units, and~b! strong compression,H530 lattice units. Each view
contains four chain configurations, each generated independent
a random walk starting from the fixed tether. The four chains in
side views have been rotated such that their end-to-end vector
coincident, i.e., we plot their (r ,z) monomer coordinates wherer
5Ax21y2. In this figure, a random numbere, uniformly distributed
on @20.5,0.5#, has been added to the discrete monomer position
enhance the images.
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central midpoint between the cylinders, to the monomer f
thest removed from the plane which bisects the gap betw
the cylinders. A chain height that exceeds the compres
distanceH is neither a necessary nor sufficient condition
escape. However, a minimum in the average maximal ch
height is indicative of nonuniform deformation within th
chain. With compression, the height of the confined port
of the chain is squeezed and its height decreases; how
the escaped portion of the chain expands as more mono
of the chain are squeezed out from between the cylinder

FIG. 3. Average properties for aN5104 monomer, lattice-based
chain whose end is centrally placed at the midpoint between the
ends of two cylinders, separated a variable distanceH. The averages
are constructed from an ensemble of random walks ofN steps on a
cubic lattice which do not intersect the compressing cylinders
plotted against the compression distance,H. For most compression
distances investigated, the average was constructed from at
5000 successful chain configurations. The average properties
shown for cylinders of three different radii:L51000 shown by the
dashed line,L5120 by the solid lines, andL550 by the dotted line
L measured in monomer unitsa. The averaged quantities versu
compression distance are~a! maximal height, and~b! maximal ra-
dial extent divided by obstacle radius,L. These figures show tha
the average chain confined between cylinder of radiusL5120 un-
dergoes an escape transition. The average size of theN5104 chains
is larger than the cylinders of radiusL550 and consequently, ther
is no sharp escape transition. The cylinders of radiiL51000 are
effectively infinite in size with respect to the chain size as
chains are completely confined between the cylinders, deform
uniformly with compression and exhibiting no escape transition
der the compressions studied.
r-
en
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n
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ers
at

strong compression. Thus, an average height that decre
monotonically with compression is associated with a co
pletely trapped chain that does not escape, as inL51000 of
Fig. 3~a!. A height that decreases identically with large o
stacles at weak compression, and then sharply increas
indicative of an escape transition, as in theL5120 case.
Note that in the case of theL550 cylinders, the average
height of the weakly compressed chain is larger than tha
a chain confined between cylinders ofL5120 and 1000 at
the same compression. The chain height is not as dram
cally reduced by the compressing cylinders as in the cas
larger cylinder radii. This is indicative of cylinders of rad
smaller than the natural size of the chain. The chain does
escape with compression, there is no escape transition,
the nonuniform deformation of the chain, while still eviden
is not as pronounced as that in the cases where escape
sitions occur.

Figure 3~b! is the average maximal radial extent of th
chain, versus compression distance. When the maxima
dial position exceeds the radii of the cylinders, then we c
state that, on average, a portion of the chain is outside
radius of the cylinders. Thus, chains that are trapped betw
cylinders of radiiL550 andL51000 do not exhibit escap
transitions as the radial extent scaled byL does not trespas
unity with compression. However, the averages indicate
chains trapped between cylinders ofL5120 do undergo an
escape transition.

Figures 4 and 5 show different chain configurations
specifiedL andH and allow one to see average chain sha
and monomer density. Note that the quantitative results
tained from stochastic evaluation of the partition functi
are, with one exception, very similar to those in the appro
mate two-state model with fluctuations~Sec. II!. The excep-
tion is that the stochastic method cannot reliably access
strongly compressed region, where the maximum chain
mensions~height and radial extent! are expected to plateau

IV. EXACT NUMERICAL EVALUATION
OF THE PARTITION FUNCTION

The stochastic generation of random walks does not al
us to construct the free energy to the precision that is
quired to construct force profiles, particularly at intermedia
to strong compression. An alternative approach is to cons
an ideal chain with a ‘‘spring’’ or bonded potential which
specifically selected such that the partition function and
sociated properties can be solved analytically. Here we se
the bonded potential between monomersi and i 11 to be of
the form @16#

k~ uxi 112xi u1uyi 112yi u1uzi 112zi u!, ~5!

where the coordinates of monomeri are given by (xi ,yi ,zi).
This potential has the peculiar property that the force
tween the two monomers is constant and the energy
creases as their separation increases. The form of this po
tial implies that the chain is not quite spherically symmet
in bulk, but this asymmetry disappears asN21. Indeed, a
chain ofN such monomers becomes Gaussian asN increases
and the properties of the chain will be independent of
exact form of the bonding potential except on the scale of
monomer-monomer separation. The average separationa,
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between bonded monomers isa256(kBT/k)2; the average
end-to-end distance isaAN21; and the radius of gyration
Rg , is given byRg

25(N21/N)a2/6. The use of such a bond
ing potential for force calculations in a slit has been th
oughly examined in an earlier paper by one of the auth
@16#.

We can construct an analytic expression for the partit
function of such a chain, end-tethered and compressed
tween finite obstacles. The obstacle geometry is simila
that of Sec. III, except that we reduce the dimension of
problem from 3 to 2. This reduction in dimension is nece
sary only to keep the complexity of the analytic soluti
minimal. We thus consider compression of a chain betw
two rectangles. Thei 51 monomer is fixed at the (x,z) ori-
gin, selected to be radially centered and midpoint betw
the two obstacles. The two impenetrable obstacles exc
monomers from the regionsuxu,L, z.H/2 and uxu,L, z
,2H/2, so that the compression distance or slit separa
is H and the half-width of the obstacle isL. Thus the two
dimensional version of the problem is equivalent to a th
dimensional problem in which the obstacles extend ind
nitely in they direction.

FIG. 4. Snapshots of 200 lattice-grown chains, each ofN
5100 monomers, compressed between two transparent cylinde
radii L512 separated a variable distanceH. Each point correspond
to the location of a monomer and collectively describes the
pected density of monomers. We have added a random numbe,
uniformly distributed on@20.5, 0.5#, to the discrete monomer po
sitions to enhance the images. Side and top views are given
three different compression distances:~a! H520, ~b! H510, and
~c! H54. In ~a! we have weak compression and the monomers
mainly located near the center of the circle. The monomer densi
largest at the center, because the first monomer is always locat
the centerr 50 and the density decreases withr as the number of
possible monomer positions scales asr. In ~b! the chain is more
compressed and has expanded slightly, but is still rarely escape
~c! escape has occurred. There is still a central dense region
though this is much reduced in size. This is surrounded by a
dense region, followed by a more dense halo of escaped mono
outside the circle.
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The partition function for the chain is then given by

Z~H !5E
A2

. . . E
AN

expS 2bk (
i 51

N21

~ uxi 112xi u

1uzi 112zi u!D )
i 51 . . .N

dzidxi , ~6!

where Ai is the allowed area for monomeri ~i.e., all area
apart fromuxi u,L and uzi u.H/2), andb51/(kBT). If one
starts to evaluate thex andz integrals in Eq.~6!, progressing
through each of the monomers beginning withi 52, the
structural form of the solution becomes apparent. After
coordinates of monomeri have been integrated out, the term
of the resulting expression are all of the for
exp(6bkuxi11u6bkuzi11u)uzi11unuxi11um multiplied by coeffi-
cients that depend onH andL, and wherem andn are inte-
gers between 0 andi 22. These coefficients can be express
in recurrence relations, which in turn can be used to obt
analytic results forZ(H) and its derived quantities such a
compressive force. The detail of this algebraically comp
cated procedure and the resulting expressions are give
the Appendix.

We can evaluate the partition function, and its derivat
with respect toH, as functions ofH, L, anda by iteratively
evaluating the recurrences for finiteN using a mathematica
algebra package. However, this requiresO(N4) storage, and
becomes impractical with large number of monomers,N. A
more efficient implementation is to fix the values ofH andL,
and evaluate the recurrences numerically. This requ
O(N4) time but onlyO(N2) storage. A simpleFORTRAN90

code to perform this evaluation is available from the auth
@17#. The main limitation of the numerical scheme is due
the finite precision of computer arithmetic. The region
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FIG. 5. Snapshots of 98 chains, each ofN51000 monomers
compressed between two transparent cylinders of radiusL540 that
are separated a distanceH510 apart and viewed from the top of th
cylinders. We have added a random numbere, uniformly distrib-
uted on@20.5, 0.5#, to the discrete monomer positions to enhan
the images. These chains represent the subset of chains which
escaped, i.e., those which have at least one monomer outside o
cylinder radii. We have also rotated each chain so that the
escaped monomer of all chains is located at a prescribed point.
allows us to discern the average shape of the chain from the m
mer density. It is clear that the imprisoned monomers form a hig
stretched tether and the escaped monomers form a fairly isotr
random walk.



ar

e

ti

d
r,

iti
is
te
g
ly

l t

le
n

he
o

-
or

c

is

a
g

m
6

ition
in

rage
e
ne

ored

it,
nt is

the

po-
t,
he
r
e

the
all

t
at-
of

si-
ge.

ion
ic

ain

ain

6912 PRE 60J. ENNIS, E. M. SEVICK, AND D. R. M. WILLIAMS
most interest in the problem is forH!Rg , and asN in-
creases there is a growing loss of precision. In ordin
double precision arithmetic, this limitsN to about 40, de-
pending somewhat on the value ofL. This can be extended
up to aroundN5100 using quadruple precision, but at th
cost of a significant increase in computation time.

From the partition function, we can evaluate the analy
compressive forcef (H)521/Z ]Z(H)/]H. Figure 6 shows
the force,f, as a function of the compression distance,H, for
chain with N540 monomers and various values ofL. For
L/Rg51 the force is monotonically increasing asH de-
creases. ForL/Rg53 there is a broad local maximum, an
for larger values ofL this local maximum becomes sharpe
and occurs at stronger compression or smallerH. This char-
acteristic shape of the force profile near the escape trans
is in accord with the predictions of the two-state model d
cussed in Sec. II. AsH tends to 0, the force tends to a fini
value for theseN540 chains. This is an artifact of the sprin
potential and the finite number of monomers; i.e., by app
ing large enough pressures it is possible to squeeze al
monomers~other than the anchoring one! out of the slit. A
finite-sized chain with finitely extensible or inextensib
bonds would give a divergent force at small separatio
However, the flexible bond potential in Eq.~5! used in a
chain with largeN will also yield a divergent force at high
compression.

The coefficients that are found in the evaluation of t
partition function can also provide the analytic description
the location of the free chain end ori 5N monomer. Here we
look at the root-mean square displacement of thei 5N
monomer from its tetheredi 51 end as a function of com
pression. It is instructive to look at the lateral
x-displacement separately from the vertical orz-displacement
and note how each of these shows the signature of the es
transition. The root-mean square~rms! averagex displace-
ment is shown in Fig. 7 as a function of compression d
tanceH and for the same range of obstacles widthsL as in
Fig. 6, again forN540. As the chain is compressed to
separationH of O(1/L), the chain escapes, and the avera
lateral displacement increases. This transition beco
sharper as the obstacle size,L, increases. Comparing Figs.

FIG. 6. Forcef as a function of compression distanceH for a
chain with N540 monomers in the two-dimensional compress
problem, using the numerical evaluation of the exact result. Th
solid line, obstacles half-widthL5Rg ; dashed line,L53Rg ; long
dashed line,L55Rg ; dotted-dashed line,L57Rg ; thin solid line,
L59Rg .
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and 7, we see that the separation at which there is a trans
in lateral displacement corresponds to a local maximum
the force. Note that for the escaped chain, the rms ave
extent is about 1.6Rg beyond the edge of the slit. Since th
problem considered in this section is two dimensional, o
can think of the escaped chain as being like a chain anch
at one end to an impenetrable, vertical wall~the anchoring
point being where the chain emerges from the slit!. This
analogous problem is easily solved in the long chain lim
and in that case the rms average of the lateral compone
2Rescnormal to the wall, whereResc is the radius of gyration
of the part of the chain that has escaped. In this case
flexibility of the bond potential means that for smallH,
Resc'Rg .

If one examines the rms average of the vertical com
nent ~in the z direction! of the end monomer displacemen
then there is a similar transition, as shown in Fig. 8. If t
obstacle is large, i.e.,L@Rg , then for weak compressions, o
1/L!H!L, there is a decrease in chain ‘‘height’’ as th
chain is compressed. When compressed at a criticalH, which
is O(1/L), then the chain can escape and spread out in
vertical direction. Note that at strong compression or sm
separations, the rms average of thez-component is abou
1.4Rg . Using the analogy discussed above with a chain
tached to a wall, in the long chain limit the rms average
the vertical component isA2Resc.

It is also possible to examine the distribution of the po
tion of the end monomer, and not just the RMS avera

k

FIG. 7. RMS lateral distance of the end monomer of the ch
from the anchoring point forN540, as a function of separation,H.
Curves as in Fig. 6.

FIG. 8. RMS vertical distance of the end monomer of the ch
from the anchoring point forN540 as a function of separation,H.
Curves as in Fig. 6.
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Again, it is instructive to look at the lateral and vertical com
ponents of the distribution separation. Figure 9 shows
distribution in the lateral direction forN540, L57Rg and
five different separations, corresponding toHL/(Rg)250.5,
1.0, 1.25, 1.5, 2.0. The area under each of the curves is
since the distribution is symmetric aboutx50. At the largest
separation, the end monomer is almost entirely confined
the slit. WhenHL/(Rg)251.5, corresponding roughly to th
location of the local maximum in the force, there is a sm
proportion of ends outside the slit, and asH is decreased
further, this proportion grows rapidly, until atHL/(Rg)2

50.5 almost no ends remain in the slit. The distribution
ends outside the slit in the lateral direction resembles tha
a polymer anchored to a flat wall, as per the analogy d
cussed above.

The corresponding distribution of chain ends in the ve
cal direction is shown in Fig. 10, again forN540 andL
57Rg . The main graph shows the distribution for ends o
side the slit (uxu.L), while the inset shows the distributio
of ends inside the slit (uxu,L). For HL/(Rg)252.0 and 1.5,
most of the chain ends are still confined in the slit, where
density is increasing asH decreases. AsH is reduced further,
the chain begins to escape, the density of chain ends in

FIG. 9. Distribution of the lateral position of the end monom
from the anchoring point forN540 andL57Rg . Thick solid line,
HL/Rg

252.0; thin solid line, HL/Rg
251.5; dashed line,HL/Rg

2

51.25; long dashed line,HL/Rg
251.0; dotted-dashed line,HL/Rg

2

50.5.

FIG. 10. Distribution of the vertical position of the end mon
mer from the anchoring point forN540 andL57Rg . Curves as in
Fig. 9. The main graph shows the distribution for the case where
end monomer is outside the slit (uxu.L) and the inset shows th
distribution when the end monomer is inside the slit (uxu,L).
e
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slit falls rapidly, and the proportion of chain ends outside t
slit rises. Again the distribution of ends outside the slit r
sembles the distribution of ends in the lateral direction fo
polymer anchored to a flat wall.

Having examined the distribution of the end monomer
the case whenL@Rg , it is instructive to look at the distri-
butions forL5Rg andN540. In this regime we expect tha
significant numbers of monomers will have escaped fr
under the obstacle, even for the case of no compress
Figure 11 shows the lateral distribution and Fig. 12 the v
tical distribution for a set of separations which correspond
HL/(Rg)250.5, 1, 1.5, 2, 2.5. Here is it evident that even
large separations, the chain ends penetrate well beyond
edge of the slit. Note that the density distribution is contin
ous in x and z, and the discontinuity evident in the later
direction in Fig. 11 at the edge of the slit arises because
the integration over the vertical direction. As the separat
decreases, the chain ends are gradually squeezed out o
slit, but there is no sharp transition. Observing the distrib
tion in the vertical direction in Fig. 12, it is interesting t
note that the spread of monomers outside the slit initia
decreases asH decreases, as the reduction in slit width r
stricts thez displacement of the point where the chain c
first escape.

e

FIG. 11. Distribution of the lateral position of the end monom
from the anchoring point forN540 andL5Rg . Thick solid line,
HL/Rg

252.5; thin solid line,HL/Rg
252; dashed line,HL/Rg

251.5;
long dashed line,HL/Rg

251.0; dotted-dashed line,HL/Rg
250.5.

FIG. 12. Distribution of the vertical position of the end mon
mer from the anchoring point forN540 andL5Rg . Curves as in
Fig. 11. The main graph shows the distribution for the case wh
the end-monomer is outside the slit (uxu.L), and the inset shows
the distribution when the end monomer is inside the slit (uxu,L).
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The force curves obtained forN540 show the qualitative
features predicted by the two-state model, in particular
existence of a local maximum and minimum in the for
versus separation curve for large enough values ofL. How-
ever, 40 monomers is still not a long chain and the sca
behavior expected inH* is not yet evident. By doing a serie
of calculations at a fixed value ofL/Rg with values ofN up
to 100, we can extrapolate to the largeN limit, where the
results should be independent of the specific monom
monomer potential employed. We can then examine how
critical compression,H* , and force,f * , at the local maxi-
mum in the force curve scale withL. The two-state mode
predicts thatH* L/Rg

2 and f * Rg
4/(kBTL3) should be constan

for large enoughL.
Figure 13~a! shows the numerical values ofH* L/Rg

2 for
L/Rg53, . . . ,7 andN up to 100, plotted on a scale ofN21/2,
along with the extrapolated points for largeN ~these are the
points at zero on the horizontal scale!. The extrapolation is
done by a least squares fit of a quadratic inN21/2, in order to
capture the upward curvature of the data for fixedL and
increasingN. As L increases, the extrapolated points f
large N appear to reach and maintain a constant value

FIG. 13. Extrapolation of scaled critical compression and cr
cal force to the long chain limit, for various values of the obsta
half-width, L/Rg . The symbols give the values obtained from
exact numerical evaluation of the partition function for finite cha
with up to N5100 monomers. The symbols at 0 on the horizon
scale are the extrapolated values from a least squares fit of a
dratic in N21/2, while the curves are only a visual guide. Solid lin
and circles,L/Rg53; dotted line and squares,L/Rg54; dashed line
and diamonds,L/Rg55; long dashes and triangles,L/Rg56;
dotted-dashed line and inverted triangles,L/Rg57. ~a! Scaled criti-
cal compressionH* L/Rg

2 , ~b! scaled critical forcef * Rg
4/(kBTL3).
e

g

r-
e

f

H* L/Rg
2'3.060.1, allowing for some uncertainty in the ex

trapolation. The extrapolated value forL/Rg53 is clearly
lower than the others, since this is in the region where
transition first appears, and the local maximum in the forc
broad.

Figure 13~b! similarly shows the numerical values o
f * Rg

4/(kBTL3) and the extrapolation to largeN. As L in-
creases, the extrapolated values appear to be approach
constant value of'0.6560.03, although the convergenc
with L is slower than in Fig. 13~a!. In both of these graphs, i
is clear that fixingN and varyingL gives misleading results
as far as the scaling predictions for largeL are concerned,
since the rate of approach to the largeN limit varies with L.
By first extrapolating to largeN we have been able to con
firm the quantitative validity of the predictions of the two
state model asL varies.

V. CONCLUSIONS

In this paper we have studied in some detail the comp
sion of an ideal chain between one or two finite obstac
Three different methods and three different geometries h
been used, but in all cases we find evidence of an esc
transition, as predicted by earlier simple theories@6–9#. We
have shown how thermal fluctuations near the transition
blur what was previously a sharp transition. Most impo
tantly we have provided an exact calculation of the partit
function, which shows unambiguously that a maximum a
minimum occurs in the force curves as a function of co
pression. This calculation is in many ways vital, since it is
principle exact, and overcomes all of the difficulties and
herent uncertainties associated with the earlier theories
computer simulations. It also lays to rest claims that ha
occurred in a number of unpublished works, that there is
jump in the force curve under compression. We note in c
cluding that our results are valid for the case where
height is the independent variable, and where the force~and
other quantities! are measured for a given height. In this ca
the Helmholtz free energy is the appropriate thermodyna
potential, and there is a jump in the force at the transiti
Other situations can also be realized. For instance, it is p
sible to have force as the independent variable and mea
the height. In this case the Gibbs free energy is the appro
ate potential and then one gets a jump in the height a
function of force@15#.
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APPENDIX

The exact evaluation of the partition function given in E
~6! ~and its derivative! for a finite chain ofN monomers
proceeds as follows. It is convenient to scale the lengths
1/(bk), so that the new monomer positions are given
xi

new5bkxi
old , etc. The dimensionless half-width of the o

stacles is then given byL̂5bkL, and the dimensionless half

separation byĤ5bkH/2. Thus the two obstacles now oc
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cupy the regionsuxu,L̂, z.Ĥ and uxu,L̂, z,2Ĥ.
One begins the integrals at the fixed end of the polym

( i 51). After the coordinates of monomeri 21 have been
integrated out, the expression is a function ofzi andxi , and

has the following form. Foruzi u,Ĥ and uxi u,L̂, the form is

(
n50

i 22

(
m50

i 22

uzi unuxi um@Anm
i exp~2uzi u2uxi u!

1Bnm
i exp~ uzi u2uxi u!1Cnm

i exp~2uzi u1uxi u!

1Dnm
i exp~ uzi u1uxi u!#.

For uzi u,Ĥ and uxi u.L̂ the form is

(
n50

i 22

(
m50

i 22

uzi unuxi um@Enm
i exp~2uzi u2uxi u!

1Fnm
i exp~ uzi u2uxi u!#.

For uzi u.Ĥ and uxi u.L̂ the form is

(
n50

i 22

(
m50

i 22

uzi unuxi um@Gnm
i exp~2uzi u2uxi u!#.

To perform the next integration in the partition functio
these expression are multiplied by exp(2uxi112xiu2uzi11
2ziu) and integrated overAi . Collecting terms, the resulting
expression is again of the above form, and the new coe
cientsAnm

i 11 , Bnm
i 11 , etc. obey the following set of recurrenc

relations. To reduce the length of the formulas, common s
expressions are written asf q for some integerq, and thesef q
expressions are given below after the recurrences,

A0,0
i 115 (

n50

i 22

(
m50

i 22

~Anm
i f 1f 21Bnm

i f 3f 21Cnm
i f 1f 51Dnm

i f 3f 5

1Enm
i f 1f 71Fnm

i f 3f 71Gnm
i f 8f 7!.

For 0,v< i 21,

Av,0
i 115 (

m50

i 22 F f 2S 1

v
Av21,m

i 1 (
n5v

i 22

Anm
i f 9D

1 f 5S 1

v
Cv21,m

i 1 (
n5v

i 23

Cnm
i f 9D

1 f 7S 1

v
Ev21,m

i 1 (
n5v

i 22

Enm
i f 9D G .

For 0,w< i 21,

A0,w
i 115 (

n50

i 22 F f 1S 1

w
An,w21

i 1 (
m5w

i 22

Anm
i f 10D

1 f 3S 1

w
Bn,w21

i 1 (
m5w

i 22

Bnm
i f 10D G .

For 0,v< i 21 and 0,w< i 21,
r

fi-

b-

Avw
i 115 (

n5v

i 22

(
m5w

i 22

Anm
i f 9f 101

1

v (
m5w

i 22

Av21,m
i f 10

1
1

w (
n5v

i 22

An,w21
i f 91

1

vw
Av21,w21

i ,

B0,0
i 115 (

n50

i 22

(
m50

i 22

~2Anm
i f 8f 21Bnm

i f 4f 22Cnm
i f 8f 51Dnm

i f 4f 5

2Enm
i f 8f 71Fnm

i f 4f 71Gnm
i f 8f 7!.

For 0,v< i 22,

Bv,0
i 115 (

m50

i 22 F f 2S 2
1

v
Bv21,m

i 1 (
n5v

i 23

Bnm
i f 9~21!n2vD

1 f 5S 2
1

v
Dv21,m

i 1 (
n5v

i 23

Dnm
i f 9~21!n2vD

1 f 7S 2
1

v
Fv21,m

i 1 (
n5v

i 23

Fnm
i f 9~21!n2vD G .

For 0,w< i 21,

B0,w
i 115 (

n50

i 22 F2 f 8S 1

w
An,w21

i 1 (
m5w

i 22

Anm
i f 10D

1 f 4S 1

w
Bn,w21

i 1 (
m5w

i 22

Bnm
i f 10D G .

For 0,v< i 22 and 0,w< i 21,

Bvw
i 115 (

n5v

i 23

(
m5w

i 22

Bnm
i f 9f 10~21!n2v2

1

v (
m5w

i 22

Bv21,m
i f 10

1
1

w (
n5v

i 22

Bn,w21
i f 9~21!n2v2

1

vw
Bv21,w21

i ,

C0,0
i 115 (

n50

i 22

(
m50

i 22

~2Anm
i f 1f 72Bnm

i f 3f 71Cnm
i f 1f 6

1Dnm
i f 3f 61Enm

i f 1f 71Fnm
i f 3f 71Gnm

i f 8f 7!.

For 0,v< i 22,

Cv,05 (
m50

i 22 F2 f 7S 1

v
Av21,m

i 1 (
n5v

i 22

Anm
i f 9D

1 f 6S 1

v
Cv21,m

i 1 (
n5v

i 23

Cnm
i f 9D

1 f 7S 1

v
Ev21,m

i 1 (
n5v

i 22

Enm
i f 9D G .

For 0,w< i 22,
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C0,w
i 115 (

n50

i 22 F f 1S 2
1

w
Cn,w21

i 1 (
m5w

i 23

Cnm
i f 10~21!m2wD

1 f 3S 2
1

w
Dn,w21

i 1 (
m5w

i 23

Dnm
i f 10~21!m2wD G .

For 0,v< i 22 and 0,w< i 22,

Cvw
i 115 (

n5v

i 23

(
m5w

i 23

Cnm
i f 9f 10~21!m2w

1
1

v (
m5w

i 23

Cv21,m
i f 10~21!m2w

2
1

w (
n5v

i 23

Cn,w21
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1

vw
Cv21,w21

i ,

D0,0
i 115 (
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i 22

(
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i 22
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i f 8f 72Bnm

i f 4f 72Cnm
i f 8f 61Dnm

i f 4f 6

2Enm
i f 8f 71Fnm

i f 4f 71Gnm
i f 8f 7!.

For 0,v< i 22,

Dv,05 (
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i 22 F2 f 7S 2
1

v
Bv21,m

i 1 (
n5v

i 23

Bnm
i f 9~21!n2vD

1 f 6S 2
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v
Dv21,m

i 1 (
n5v

i 23

Dnm
i f 9~21!n2vD

1 f 7S 2
1

v
Fv21,m

i 1 (
n5v

i 23

Fnm
i f 9~21!n2vD G .

For 0,w< i 22,

D0,w
i 115 (

n50

i 22 F2 f 8S 2
1

w
Cn,w21

i 1 (
m5w

i 23

Cnm
i f 10~21!m2wD

1 f 4S 2
1

w
Dn,w21

i 1 (
m5w

i 23

Dnm
i f 10~21!m2wD G .

For 0,v< i 22 and 0,w< i 22,

Dvw
i 115 (

n5v

i 23

(
m5w

i 23

Dnm
i f 9f 10~21!n1m2v2w

2
1

v (
m5w

i 23
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w (
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i 23
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vw
Dv21,w21

i ,
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i f 1f 12
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i f 8f 13!.
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n5v
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Anm
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1 f 12S 1

v
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i 23
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1 f 13S 1
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For 0,w< i 21,
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i 115 (
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En,w21
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m5w
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Enm
i f 10D
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i 23

Fnm
i f 10D

1 f 8S 1
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Gn,w21
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m5w

i 22

Gnm
i f 10D G .

For 0,v< i 21 and 0,w< i 21,

Evw
i 115 (

n5v

i 22
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m5w

i 22

Enm
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m5w

i 22

Ev21,m
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n5v
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En,w21
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vw
Ev21,w21
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F0,0
i 115 (

n50

i 22

(
m50

i 22

~2Anm
i f 8f 111Bnm

i f 4f 112Cnm
i f 8f 12

1Dnm
i f 4f 122Enm

i f 8f 131Fnm
i f 4f 131Gnm

i f 8f 13!.

For 0,v< i 22,

Fv,05 (
m50

i 22 F f 11S 2
1

v
Bv21,m

i 1 (
n5v

i 23

Bnm
i f 9~21!n2vD

1 f 12S 2
1

v
Dv21,m

i 1 (
n5v

i 23

Dnm
i f 9~21!n2vD

1 f 13S 2
1

v
Fv21,m

i 1 (
n5v

i 23

Fnm
i f 9~21!n2vD G .

For 0,w< i 22,

F0,w
i 115 (

n50

i 22 F2 f 8S 1

w
En,w21

i 1 (
m5w

i 22

Enm
i f 10D

1 f 4S 1

w
Fn,w21

i 1 (
m5w

i 23

Fnm
i f 10D

1 f 8S 1

w
Gn,w21

i 1 (
m5w

i 22

Gnm
i f 10D G .

For 0,v< i 22 and 0,w< i 22,
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Fvw
i 115 (

n5v

i 23

(
m5w

i 23

Fnm
i f 9f 10~21!n2v2

1

v (
m5w

i 23

Fv21,m
i f 10

1
1

w (
n5v

i 23

Fn,w21
i f 9~21!n2v2

1

vw
Fv21,w21

i ,

G0,0
i 115 (

n50

i 22

(
m50

i 22

~Anm
i f 14f 111Bnm

i f 15f 111Cnm
i f 14f 12

1Dnm
i f 15f 121Enm

i f 14f 131Fnm
i f 15f 131Gnm

i f 16f 13!.

For 0,v< i 21,

Gv,05 (
m50

i 22 F f 13S 1

v
Gv21,m

i 1 (
n5v

i 22

Gnm
i f 9D G .

For 0,w< i 21,

G0,w
i 115 (

n50

i 22 F f 14S 1

w
En,w21

i 1 (
m5w

i 22

Enm
i f 10D

1 f 15S 1

w
Fn,w21

i 1 (
m5w

i 23

Fnm
i f 10D

1 f 16S 1

w
Gn,w21

i 1 (
m5w

i 22

Gnm
i f 10D G .

For 0,v< i 21 and 0,w< i 21,

Gvw
i 115 (

n5v

i 22

(
m5w

i 22

Gnm
i f 9f 101

1

v (
m5w

i 22

Gv21,m
i f 10

1
1

w (
n5v

i 22

Gn,w21
i f 91

1

vw
Gv21,w21

i ,

where the subexpressionsf q are given by

f 15
n!

2n
2 f 8 ,

f 25
m!

2m
2 f 7 ,

f 35
Ĥn11

n11
2

~21!nn!

2n11
,

f 45
Ĥn11

n11
1

~21!nn!

2n11
,

f 55
L̂m11

m11
2

~21!mm!

2m11
,

f 65
L̂m11

m11
1

~21!mm!

2m11
,

f 75exp~22L̂ ! (
p50

m
L̂m2pm!

2p11~m2p!!
,

f 85exp~22Ĥ ! (
p50

n
Ĥn2pn!

2p11~n2p!!
,

f 95
n!

2n2v11v!
,

f 105
m!

2m2w11w!
,

f 115
L̂m11

m11
1

m!

2m11
2 f 7 ,

f 125
L̂m11

m11
1exp~2L̂ ! (

p50

m
L̂m2p~21!pm!

2p11~m2p!!
2

m! ~21!m

2m11
,

f 135 f 71
m!

2m11
2

L̂m11

m11
,

f 145
Ĥn11

n11
1

n!

2n11
2 f 8 ,

f 155
Ĥn11

n11
1exp~2Ĥ ! (

p50

n
Ĥn2p~21!pn!

2p11~n2p!!
2

n! ~21!n

2n11
,

f 165 f 81
n!

2n11
2

Ĥn11

n11
.

The recurrences for the coefficients begin withi 53, for
which the coefficients are

A0,0
3 512

1

2
e22Ĥ1

1

4
e22L̂22Ĥ,

A1,0
3 5A1,1

3 51,

A0,1
3 512

1

2
e22Ĥ,

B0,0
3 52

1

2
e22Ĥ1

1

4
e22L̂22Ĥ,

B0,1
3 52

1

2
e22Ĥ,

C0,0
3 5D0,0

3 5
1

4
e22L̂22Ĥ,

E0,0
3 512

1

4
e22Ĥ2

L̂

2
e22Ĥ1

1

4
e22L̂22Ĥ,
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E1,0
3 5E0,1

3 5E1,1
3 51,

F0,0
3 52

1

4
e22Ĥ2

L̂

2
e22Ĥ1

1

4
e22L̂22Ĥ,

G0,0
3 5S 1

2
1Ĥ2

1

2
e22ĤD S 1

2
1L̂2

1

2
e22L̂D

1
1

2
2L̂1

1

2
e22L̂,

G1,0
3 5

1

2
2L̂1

1

2
e22L̂,

G0,1
3 5G1,1

3 51.

The partition function in Eq.~6! can now be written as

Z5~bk!22N (
n50

N22

(
m50

N22

~Anm
N f 19f 201Bnm

N f 21f 201Cnm
N f 19f 22

1Dnm
N f 21f 221Enm

N f 19f 181Fnm
N f 21f 181Gnm

N f 17f 18!,

~A1!

where

f 1752 exp~2Ĥ ! (
p50

n
Ĥn2pn!

~n2p!!
,

f 1852 exp~2L̂ ! (
p50

m
L̂m2pm!

~m2p!!
,

f 1952n! 2 f 17,

f 2052m! 2 f 18,

f 2152 exp~Ĥ ! (
p50

n
Ĥn2p~21!pn!

~n2p!!
22n! ~21!n,
.L

s

ir

ro

ro
f 2252 exp~ L̂ ! (
p50

m
L̂m2p~21!pm!

~m2p!!
22m! ~21!m.

In order to obtaindZ/dĤ, which is needed for calculating

the force, one can differentiate Eq.~A1! with respect toĤ.
The resulting equation contains derivatives of the coe

cients with respect toĤ, e.g.,dAnm
N /dĤ, etc. By differenti-

ating the various recurrence relations given above, one
tains recurrence relations for these derivatives. Th
recurrences again begin withi 53, the values of the deriva
tives there being calculated by taking the derivatives w

respect toĤ of the values of the coefficients ati 53. This
procedure is straightforward, although tedious, and to c
serve space the resulting equations are not given here.

The coefficients fori 5N contain the information abou
the density distribution of the end monomers of the cha
which can be obtained without any further calculation.
order to compute the density distribution of every oth
monomer in the chain, and hence the total monomer den
it would be necessary to derive another set of coefficie
obeying somewhat more complicated recurrences, obta
by evaluating the partition function by beginning with th
integrals fori 5N. The need for additional coefficients arise
because the chain is fixed at one end and not at the o
Although the calculation is in principle straightforward, th
amount of effort required is more than that already expen
in obtainingZ, and so is not attempted here.

In order to evaluate the above expressions to obtainZ and

dZ/dĤ, it is useful to rescale the coefficients in order
prevent their magnitudes from varying too wildly. The fo
lowing scaling is fairly natural, and leads to some simpli
cations in the form of the expressions

Ān,m
i 5An,m

i n!m!

22i 2n2m
,

where the coefficient on the left-hand side with the bar r
resents the scaled version, and similarly for the other coe
cients.
.
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