
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 17 (2005) S3239–S3244 doi:10.1088/0953-8984/17/45/007

Demonstration of the steady-state fluctuation theorem
from a single trajectory

G M Wang, D M Carberry, J C Reid, E M Sevick and D J Evans

Research School of Chemistry, The Australian National University, Canberra 0200, ACT,
Australia

Received 5 October 2005
Published 28 October 2005
Online at stacks.iop.org/JPhysCM/17/S3239

Abstract
The fluctuation theorem (FT) quantifies the probability of Second Law of
Thermodynamics violations in small systems over short timescales. While this
theorem has been experimentally demonstrated for systems that are perturbed
from an initial equilibrium state, there are a number of studies suggesting that
the theorem applies asymptotically in the long time limit to systems in a non-
equilibrium steady state. The asymptotic application of the FT to such non-
equilibrium steady-states has been referred to in the literature as the steady-state
fluctuation theorem (or SSFT). In 2005 Wang et aldemonstrated experimentally
an integrated form of the SSFT using a colloidal bead that was weakly held in
a circularly translating optical trap. Moreover, they showed that the integrated
form of the FT may, for certain systems, hold under non-equilibrium steady
states for all time, and not just in the long time limit, as suggested by the SSFT.
While demonstration of the integrated forms of these theorems is compact and
illustrative, a proper demonstration shows the theorem directly, rather than in its
integrated form. In this paper, we present experimental results that demonstrate
the SSFT directly, and show that the FT can hold for all time under non-
equilibrium steady states.

1. Introduction

The fluctuation theorem (FT) of Evans et al [1, 2] describes how a system’s irreversibility
develops in time from a completely time-reversible system at short observation times, to a
thermodynamically irreversible one at infinitely long times. That is, it bridges the microscopic
and macroscopic descriptions, relating a system’s time-reversible equations of motion to the
Second Law. Specifically, the FT relates the relative probabilities of observing trajectories of
duration t and their conjugate anti-trajectories, each characterized by the dissipation function,
�t , taking on arbitrary values A and −A, respectively:

P(�t = −A)

P(�t = A)
= exp (−A). (1)
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The dissipation function, �t , is a dimensionless dissipated energy that is accumulated along
the system’s trajectory; expressions for �t differ from system to system. In general, it is an
extensive property, i.e., its magnitude scales with system size and observation time, t . Thus,
equation (1) also shows that as the system size gets larger or the observation time gets longer,
anti-trajectories become rare and it becomes overwhelmingly likely that the system appears
time-irreversible, in accord with the Second Law. This relationship between the FT and the
Second Law is more clearly evident in the integrated form of the FT:

P(�t < 0)

P(�t > 0)
= 〈exp (−�t)〉�t >0. (2)

In addition, equation (1) shows that the ensemble average of the dissipation function is positive
for all t and for any system size; i.e., 〈�t 〉 � 0 which is referred to as the Second Law
inequality [3].

In the literature, the reader will find two different labels for the fluctuation theorem,
depending upon how the theorem is applied. The transient fluctuation theorem or TFT is
simply equation (1) applied to transient systems, i.e., systems that evolve from a known initial
equilibrium state towards a final equilibrium or non-equilibrium steady-state. The steady-state
fluctuation theorem or SSFT refers to the steady-state application of the theorem, where the
dissipation function is evaluated over trajectory segments of duration t , sampled wholly under
non-equilibrium steady-state conditions. When �t is evaluated for deterministic, steady-state
trajectories, the theorem holds asymptotically,

lim
t→∞

P(�t = −A)

P(�t = A)
= exp(−A) for all A, (3)

which is equivalent to the form of the SSFT given in the literature. The integrated form of the
SSFT is

lim
t→∞

P(�t < 0)

P(�t > 0)
= 〈exp(−�t)〉�t >0. (4)

As we show in this paper, the asymptotic limit in the SSFT is a result of approximations made
in the argument of the theorem, �t . When we are able to express �t exactly, the asymptotic
limit is no longer needed and the operative theorem under steady-state conditions is the FT,
equation (1).

To experimentally demonstrate the FT under steady-state conditions, we chose a system
where the dissipation function can be approximated for deterministic dynamics and expressed
exactly for stochastic or Langevin dynamics. This system is based upon the drag experiment
used by Wang et al [4, 5] where a colloidal particle is weakly held in a stationary optical
trap that is translated uniformly with velocity, vopt, starting at t = 0. Initially the particle’s
position in the harmonic well is distributed according to an equilibrium Boltzmann distribution
with an average particle velocity of 0. With trap translation, the particle is displaced from its
equilibrium position until, at some later time, the average velocity of the particle is equal to
the trap velocity and the average particle position is determined by a balance between the
optical force and hydrodynamic drag. From this point, the system is in a non-equilibrium
steady state. In their original experiment, Wang and colleagues evaluated the dissipation
function, constructed using deterministic dynamics from an equilibrium initial condition and
thereby demonstrated an integrated form of the FT, equation (2), under transient conditions.
More recently, Wang et al [5] demonstrated the integrated forms of the FT and the SSFT for
steady-state translation of a particle-filled optical trap.

In this paper, we demonstrate the FT directly, rather than indirectly through the integrated
form of the theorems. We do this by evaluating the dissipation function over a single trajectory
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of an optically trapped colloidal particle, held in a circularly translating trap. Consistent with
previous theoretical predictions in the literature, we demonstrate experimentally that the FT
holds asymptotically in the long time limit. However the asymptotic limit is only necessary
when �t is derived approximately. When the dissipation function, �t , is derived exactly for
steady-state conditions, the FT holds for all time, including short times.

1.1. Deterministic derivation of an approximate dissipation function for steady-state
trajectories

For a Newtonian, deterministic system, a system’s state is described in terms of the coordinates
q and momenta p of all constituent molecules, including solvent molecules, and is represented
by a point in phase space, Γ ≡ {q, p}. For every trajectory that is initiated at Γ0 ≡ {q0, p0} and
terminates at Γt ≡ {qt , pt } in a system of reversible dynamics, there is a unique conjugate or
anti-trajectory that starts atΓ∗

0 ≡ {qt ,−pt } and ends atΓ∗
t ≡ {q0,−p0}. Let δV (Γs ≡ {qs, ps})

represent a volume element of a bundle of trajectories at time s. Then the corresponding bundle
of conjugate trajectories or anti-trajectories has the volume δV (Γ∗

s ≡ {qt−s,−pt−s }) at time
s. As the dynamics are deterministic, a set of trajectories spanning Γ0 and Γt (as well as the
corresponding set of anti-trajectories) is completely specified by the duration of the trajectories,
t , and a set of phase-space points at arbitrary time s, 0 � s � t , δV (Γs).

A measure of reversibility,�t is defined by the ratio of the probabilities of observing sets of
trajectories and their time-reverse or anti-trajectories. The probabilities of the trajectory/anti-
trajectory can be described by the probabilities of the volume elements at any arbitrary time s
along the system’s trajectory:

�t (Γ) = ln

[
P(δV (Γs))

P(δV (Γ∗
s ))

]
, (5)

where we have Γ as an argument to the dissipation function, �t (Γ), to signal that the definition
is cast for deterministic dynamics. Equilibrium statistical mechanics provides probability
distributions which are simple explicit functions of the phase space, Γ. In general, it is not
possible to cast closed-form expressions of distributions of non-equilibrium states in phase
space [6]. However, if we specify that all trajectories are initiated under equilibrium conditions,
then the phase-space probability distributions are known initially, s = 0. The dissipation
function is thus written for deterministic systems as �t(Γ) = ln[P(δV (Γ0))/P(δV (Γ∗

0))].
As the deterministic definition of �t requires that the relative probabilities of trajectories be
made under initial, equilibrium conditions, it is not possible to construct exact expressions
for �t(Γ) for trajectory segments of duration t that are wholly at a non-equilibrium steady
state. However, as the dissipation function is extensive,an approximate steady-state dissipation
function can be constructed in the following way. We can cast �t in terms of its instantaneous
rate of change, �(s) at time s, accumulated from an initial equilibrium state at time s = 0 to
some arbitrary time, t:

�t =
∫ τ

0
ds �(s) +

∫ t

τ

ds �(s). (6)

Here we have introduced τ as an arbitrary ‘cut-off’ time that is sufficiently large that the
system can be regarded as being in steady state for s > τ , so that �t is cast as a sum of
transient and steady-state contributions. The steady-state contribution is identified with the
steady-state dissipation function, �ss

t , which we can use to approximate �t with an error of
order τ : �t ≈ �ss

t + O(τ ).
An expression for �t(Γ) is derived in Wang et al [5] for the translating, particle-filled

optical trap, and is
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�t (Γ) = 1

kBT

∫ t

0
ds (fopt · vopt). (7)

Here the dissipation function is the work required to translate the trap. For quasi-static paths
where vopt → 0, the dissipation function vanishes, �t → 0, indicative of a perfectly reversible
path. When the trap velocity, vopt, is finite and the dissipation function �t > 0 is positive,
work is required to translate the trap; in contrast, in those trajectories where �t < 0, energy
is extracted from the surroundings to do work, in contradiction to the average behaviour
〈�t 〉 > 0, predicted by the Second Law. Equation (7) is exact when the time integration starts
under equilibrium conditions; however, this dissipation function is approximate and equivalent
to �ss

t when the time integration starts under non-equilibrium steady-state conditions.

1.2. Stochastic derivation of the dissipation function for steady-state trajectories

For some systems whose dynamics can be described using stochastics, it is possible to construct
probability distributions of trajectories that are wholly in a non-equilibrium steady-state. The
motion of a system under stochastic dynamics is no longer described by the set of coordinates
and momenta of all constituent molecules, but is reduced to coordinates, as for example,
r(t) = rt , the position of the colloidal particle trapped in the translating optical trap. Unlike
Newtonian dynamics, the stochastic equations of motion cannot be used to construct conjugate
pairs of trajectories through time reversal, as the stochastic force is Markovian. Moreover, as the
particle position is not unique to any given trajectory, there exist infinitely many trajectories that
originate at r0 and a subset of these arrive at a given destination rt at time t . Let {r0, rt } represent
those stochastic trajectories that evolve from r0 to rt , and let {rt , r0} represent a conjugate set
of ‘backward’ trajectories evolving from rt to r0. Letting P(r0, rt ) and P(rt , r0) represent
the normalized probability distribution of a set of forward trajectory and respective backward
trajectories, then by analogy with equation (5), Reid et al [7] expressed the stochastically
determined dissipation function as

�t (r) = ln

[
P(r0, rt )

P(rt , r0)

]
. (8)

As above, we incorporate r as an argument to the dissipation function, �t(r), to signal that
definition is cast for stochastic dynamics. For a particle in a translating, harmonic potential,
it is possible to construct analytic probability distributions P(r0, rt ) and P(rt , r0) for steady-
state, non-equilibrium particle trajectories that are wholly in a non-equilibrium steady state.
In this way, the dissipation function, expressed for a steady-state trajectory of duration t , is
exactly [5]

�t (r) = kvoptt

kBT

(rt − r0)

(1 − exp(−t/τ))
, (9)

where τ ≡ ξ/k is the characteristic timescale of particle motion and ξ is the friction coefficient
of the particle.

2. The experiment

The equipment used to generate the particle trajectories is similar to that used in the original
drag experiment of Wang et al [4]. The apparatus is based upon a Nikon DIAPHOT 300
inverted microscope equipped with a 100× (NA = 1.3) oil-immersion objective lens and
a 1 W infrared laser (λ = 980 nm) for trapping micron-sized particles in the focal plane.
An image of a trapped particle is projected onto a quadrant photodiode sensor which can
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detect displacements in particle position with resolution 15 nm. Laser power, objective focus,
and servo-motor controlled motion of the microscope stage are controlled through computer
interfaces developed by Cell Robotics Inc., USA. Fine translation of the microscope stage
is achieved by feeding the voltage signal from an arbitrary function generator (TGA1242,
Thurlby Thander Instruments Ltd, UK) to stage-mounted piezocrystals.

Approximately 50 polystyrene particles (6.3 µm in diameter) were added locally into a
stage-mounted, glass-bottomed cell, containing a 3.0 ml solution of 10 mM Tris-HCl + 1 mM
EDTA, maintained at a pH of 7.5. One particle was optically trapped, isolated from the other
particles, and used to calibrate the quadrant photodiode detector and optical trap strength. The
optical trapping constant, k, was determined by sampling the particle’s position in a stationary
trap for 120 s at 200 Hz and applying the equipartition theorem: k = kBT/〈r2〉, where r2 is
the square of the displacement of the particle from the focal point, in the focal plane. Particle
trajectories, i.e., particle position over time, rt , were then recorded as the stage was translated.
A single long trajectory was generated by continuously translating the microscope stage in a
circular path. This was achieved by feeding synchronized sine and cosine voltage waves to
two perpendicular piezocrystals attached to the microscope stage. The radius of the circular
motion was 7.3 µm and the frequency of the circular motion was 4 mHz. At this low velocity,
corresponding to a tangential trap velocity of |−vopt| = 0.18 µm s−1, the stage motion can
be treated simply as a long linear translation. The trapping constant was determined to be
k = 0.12 pN µm−1 and the relaxation time of the stationary system was τ = 0.48 s. This
single long trajectory is advantageous for studying steady-state trajectories as it maximizes
the amount of steady-state data; only the first few seconds of the initial, transient trajectory
are discarded from the analysis. The long trajectory was evenly divided into 75 s long, non-
overlapping time intervals, then each interval (670 in number) was treated as an independent
steady-state trajectory from which we constructed the steady-state dissipation functions using
either equation (7), or equation (9).

Figures 1(a) and (b) show the relative frequencies of recorded trajectories with �ss
t (Γ) =

A ± d A and �ss
t (Γ) = −A ∓ d A versus A. The time over which the dissipation function is

accumulated is t = 0.25 and 2.5 s using histogram bins of size d A = 0.015/2 and 0.15/2
respectively. Referring specifically to figure 1(a), it is clear that the FT is not obeyed—the
observed data points do not coincide with the FT prediction. In contrast, the experimental
results agree very well with the FT prediction at t = 2.5 s, figure 1(b), and at longer times up
to t = 20 s (not shown), indicating that at long times the FT is obeyed. The scatter at the ends
of the distribution can be attributed to finite sampling. Using these figures we have shown that
the SSFT is obeyed: the data only match the FT in the long time limit.

Figures 1(c) and (d) show the relative frequencies of recorded trajectories with �t(r) =
A ± d A and �t(r) = −A ∓ d A versus A, where the times over which the dissipation function
is accumulated are t = 0.25 and 2.5 s. From (c) and (d), it is clear that the FT is obeyed at all
times using the Langevin-derived dissipation function. Earlier plots at t = 0.05 s and shorter
(not shown) also indicate that the exact, Langevin-derived dissipation function obeys the FT
at all times. As the FT can be shown directly using �t(r) we no longer need the long time
limit required for the SSFT, and the operative theorem is the FT. The long time limit required
for the SSFT clearly arises from the approximations made when deriving the deterministic
dissipation function, �ss

t (Γ).

3. Conclusions

In this paper we have directly demonstrated the SSFT, rather than the integrated form of the
SSFT previously reported [5]. The data show that the FT is the applicable theorem when the
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Figure 1. In each figure ln[P(�t = A)/P(�t = −A)] is plotted against �t . The theoretical FT
prediction is shown as a continuous line. (a) The FT using �t ≡ �ss

t (Γ) is plotted at t = 0.25 s
using a histogram bin width of 0.015. (b) The FT using �t ≡ �ss

t (Γ) is plotted at t = 2.5 s using
a histogram bin width of 0.15. (c) The FT using �t ≡ �t (r) is plotted at t = 0.25 s using a
histogram bin width of 0.15. (d) The FT using �t ≡ �t (r) is plotted at t = 2.5 s using a histogram
bin width of 0.50.

(This figure is in colour only in the electronic version)

dissipation function is derived exactly. But when approximations are made to the dissipation
function, the FT only holds in the long time limit, thus illustrating the previously published
form of the SSFT. Our data also show that the long time limit in the SSFT is a direct result of
approximations made when casting expressions for the dissipation function.
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