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We examine the bending of an Alexander—de Gennes polymer brush over a wide range of curvature
from weak to strong. Two different models are used, a blob model and a simpler Flory mean field
model. In both cases the height change upon bending is anomalous. In the case of a blob model the
height increases for weak bending. In the Flory model there is no height change to first order in the
curvature. This is in sharp contrast to more sophisticated theories for brushes with free ends, and
may have applications to real-life Alexander—de Gennes brushes which have been synthesized
recently. © 1996 American Institute of PhysidsS0021-960606)50441-1

I. INTRODUCTION increase in grafting surface convexity. For weakly curved

_ surfaces, detailed self-consistent field calculations also show
A polymer brush is a system of polymers densely endy small decrease in height.

number qf applicfa_tions, most notably_su_rface n_”nodificatior\,\,hich can be used to model polymer brushes in good sol-
and colloidal stabilizatiod,and occur ublqwtc_)ysly inthe or- \,ents. The one which has proven very popular in recent years
dered phases of block copolymérsThe equilibrium struc- s 1o yse self-consistent field theofCR.”® This uses a
ture and attendant properties of these brushes is now vefy.,| osmotic pressure which is determined from the local
well understood, particularly for brushes grafted onto planag,q|ymer concentration. SCF theory provides detailed infor-
surfaces ) Br'usheslgrafted onto curved surfaces have,qiion ahout the internal structure of the brush, namely the
also been'mvestlgaté as they are important in .strongly istribution of monomers and chain ends throughout the
asymmetric block copolymer systems and for chains graﬂegrush bod§ as well as the height of the brush; however, it
onto rough surfaces. Other e_xamples of curved brushes Nuffers from being complex and difficult to use in all but the
clude polymers grafted to the interior pores of membranes Oimplest geometries. For more complex geomeffg&22-2+
to the exterior surface of colloidal particles and halry—rod]cor problems involving fluid flows or other non—equil1ibrium

olymers or molecular bottlebrushes. In this paper we calcu- .
poly pap effects 1318242519214 for problems which have not been

late the effect of bending upon two model polymer brushes,; Kled ously it | |t i q
We show that for these brushes the bending behavior is ang)e—_lc T p::—_zv:jous ¥ s mor;z u§ruha_1 0 use Zn er;arler _anl
molous and that in the more sophisticated blob model swel®'MPIer Kind —of —approach. Is second 't eqretlca
ing takes place. approximatiorf, the Alexander—de Gennes ansatz, ignores

One of the most fundamental and easily measured proﬁ-he detailed structure of the brush and assumes that all the
erties of a polymer brush is its height. In colloidal stabiliza- Chain ends are located at the brush edge. The Alexander—de

tion applications, the brush height determines the hydrody-Gen”eS gpproach has the definite advantage of simplicity and
namic radii of the brush-coated particles and increases thégsually gives correct answers for “bulk” brush properties
range of repulsive interactions between two particles, thereb§uch as the brush height and brush modulus. However, as we
reducing colloidal aggregation. In a good solvent the brusiVill show, for our model brushes it produces highly anoma-
height is determined by a balance of the osmotic pressure dpus results for a weakly bent brush, predicting that a brush
the monomers, which favors large heights, and the entropi€Xpands when bent slightly onto the outside of a cylinder or
stretching of the polymer chains, which favors small heightssphere. That the Alexander—de Gennes ansatz predicts a
Intuitively one expects that a brush grafted onto a convexieight-convexity relation far different from intuition and
surface will have a smaller height than one grafted to a plaSCF calculations is surprising and is contrary to the usual
nar surface with the same grafting density. One can undeieliance on the ansatz for first-order results.

stand this by considering that the local accessible volume per Although it was first introduced and exploited as a theo-
chain segment increases from root to brush tip, reducing thegtical ansatz, an Alexander—de Gennes brush has been real-
local stretching of the chain near the tip, and hence reducinized in practicé’ using water-soluble polymers with graft-
the size of the convex-grafted brush below that of an equivaable stickers at one end and lipid molecules at the other end.
lent planar brush. Indeed theory confirms this id&a52*  The stickers end-graft the chain forming the root of the brush
scaling predictions demonstrate a decrease in height with aand the lipids self-assemble into a flat membrane at the edge
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located atr, &(r), depends upon the local stretching,
dr/dn, according to

ay(n) / &(ry=a4dn/dr)32. (1)

z(n) The number of blobs along the contour of the chain between
r andr+dr is dn,=dr/&(r). From this structural descrip-
tion, the stretching and excluded volume contributions to the
free energy can be constructed. The stretching free energy
per chain is then given by the prescriptionkof per blob

H R+H [ dr\3?
drg‘l(r)sza‘E”zf dr(—) :
R dn

@

Each blob acts like a hard sphere of radgisand conse-
quently, we may write the excluded volume energy per unit
of the brush, effectively trapping all the chain ends therevolume askT&3c?, wherec is the concentration of blobs. In
This experimentally realized brush should closely adhere t@ lengthL of the cylinder there arbl;=27RLo chains and
the Alexander—de Gennes model. However, our calculatioin a radial volume element of siz#éV=2sxrLdr there are
described here ignores the lipid contribution to the free endr/&(r) blobs per grafted chain. Hence, the local concentra-
ergy and thus cannot be directly applied to that system. Iion of blobs isc=oRr~*¢! and the excluded volume en-
general such sticky-end brushes show novel phase behaviergy per chain is
including lateral inhomogeneities. Here we wish to concen- H4R
trate on the implications of the Alexander—de Gennes ansatz F, = kTo’RJ’ drér—?
and we will not discuss sticky brushes any further. R

R+

Fstreteri= KT f
R

FIG. 1. The geometry used for the calculation for a bent brush.

In this note we will discuss two kinds of theories for an RAH dr) —32
Alexander—de Gennes brush grafted to the outside of a :kTaRa5’2J drr‘l(—) 3
curved surface. The first is a free-energy blob model, which R dn
is a modification of that used in the planar case by RabinThe total free energy per chain is then
Alexander and Barrat’® The second is a simpler Flory 6 i
model. In the following section we present the model calcu- E/kT= den(E +u.722‘1<%) (4)
lations for the blob model in detail for the case of weak o \dn dn ’

bending for cylindrical and spherical brushes. The interme- ST S _
diate and strongly convex cases are presented in section here we have defined=ca®, %£=R/a andz=r/a and
e changed the integration variable ta via

The dependence of the Alexander—de Gennes brush heig g
. : : r=(dr/dn)dn.

upon curvature is also predicted from a simpler Flory mode W e the traiect f the chai

and the results are described in section 4. In the last section, e now require the trajectory of the chain(n),

we note the importance of these results in comparison WitI b<'n<|:|’ \.Nh'tCh mm'm'Z?S thi.t?‘tal free er}le(rjgy._ 'I;_h|s ?qw—
more sophisticated theories. Ibrium trajectory is one for which any small deviation from

the trajectoryz(n)—z(n)+ 8(n) gives zero change in the

free energy to orde®. The first order change for such a
Il. WEAK BENDING perturbation is

We consider first a blob model of the free energy for N 5
chains grafted to the outside or convex surface of a cylinder AF/KT= f dn( —uzz 2z’ 125+ 52'3/25'
of radiusR (Fig. 1). Each chain is comprised ¢ mono- 0
mers, each monomer having radiasNone of our conclu- 1 ,
sions depend on numerical prefactors which we thus ignore; - §U~%3ZIZ'325'), )
our conclusions are however sensitive to the exponents. The
first monomer of each chain is grafted with grafting densitywhere the prime meansi{dn). The above equation can be
(number of chains per unit area of grafting surfageWe let ~ simplified by noting that the two terms i may be inte-
r(n) be the radial position of theth monomer measured grated by parts
from the center of the cylinder. The first, tethered monomer N d
is atr(1)=R and the final, free end of the monomeris atthe ~ AF/kT=— f dné( uzz %z V24 —
brush tip,r(N)=R+H, whereH is the height measured 0 dn
from root to tip of the brush. A flat brush results when the 1
ratio of brush height to cylinder radius is zetd/R—0, and — Uz 17/ ‘3’2} ) (6)
weakly-bent brushes correspondHdR<<1.

In the blob model, the structure of the chain is modeledwhere the two boundary terms vanish due to the boundary
as a sequence or necklace of bl8%8>°1°The size of a blob  conditionsz(0)=R/a and z'3(N)=.7%u/(5z(N)). The first

5
E2/3/2
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boundary condition arises from the fact that the chain end is 0.05
tethered to the cylinder of radil®. The second represents a
balance between the spring forcg’®? and the osmotic = 0.00
force, 3u.%2z"*z' ~%? for the final, free monomer. The con- = T ]
dition AF =0 for any&(n) applied to(6) yields a differential i
equation for the equilibrium trajectory o 7005 ]
EN [
d|[5 1 5 ]

.%Juz‘zz"l’zwLﬁ 52’3’2—§u.%fz‘1z"3’2 =0. (7 § -0.10 -
It is convenient to recast this equation with a change vari- —0.151 ) . .
ables fromz(n) to y(n) via y(n)=z(n)—.7%, wherey(n) is 0.0 0.5 1.0 1.5 5.0
the chain trajectory, expressed as a dimensionless radial dis- Curvature

tance between a monomer and the grafting surface
FIG. 2. The change in heigikH/H, plotted against the curvatukg, /R for

d|5 1 a brush grafted to the outside of a cylindrical brusipen circleg and a
G B\~ 2y, — 112 32 G g\ — 1,1 —312 ) . . . .
,ﬂu(y+.%3) y, + % EY' - EU/;(Y"'%?) y, spherical bruslttfilled circles. The results were found by a direct numerical
minimization of the free energg4) using a blob model. Note that in each
=0 (8) case the height initially increases upon bending. The increase is however a

maximum of a few percent.
The chain trajectory described by Equati@) is valid
for any curvature. We are interested here in weak curvatures

so we expand the solution in powers bbEHy/R, where . _ .
Ho is the height of the unbent brash. Writing shrinkage that is predicted by the SCF thebpAH=— 5

y(n)=yo(n) +y1(n)+O(h?), whereyy(n) is of order h° HS/R. _The blob result has the _same magnitttewithin a
andy,(n) is of orderh!, and collecting the terms of different numerical prefactgras that predicted by the SCF theory, but

orders, yields an equation for weakly bent, convex brushest S Of the opposite sign. _
Although the swelling of a brush obeying the
d|5 1 d

1302 15 1o, 8 e, Alexander—de Gennes ansatz is both anomalous and surpris-
dn|2Y0 T3 T dn| 2 Yo V't g4Yo 1 ing it is not totally unexpected and can be “explained” as
follows. We examine the volume available to a single chain
1 . S . ) .
+Zuz tygy, 32 +U-%3_1y6_1/2:0 (9) in !ts trajectory from the graftlng surface to the prush tip.
2 This volume controls the osmotic pressure term in the free
with  boundary  conditions yo(0)+y,(0)=0 and energy, i.e_., the more the vplume that is available the smaller
y53— (ul5)+3yl2yl + (u/5).7% ty,=0 atn=N. This equa- the osmotic press_ur(éor a given number _of monomersF_or
tion can be easily solved for the flat brush: up to ordet a planar brus_h this volume increases linearly with dlstan_ce
the solution isy, is a constant. Thus the flat brush is uni- oM the grafting surface. This implies that the volume avail-
formly stretched. This constant is found from the boundary2P!€ PEr unit distance along the trajectory is a constant. Con-
condition y,=(u/5)Y3, and thus the solution for the flat sequently, no place in the brush is more favorable as a mono-
brush isy,(n)=n(u/5)"3. The height of the flat brush in mer position than a_nother and a planar.brush is u.nlformly
dimensional units is theld,=Na(oa2/5)3 This has the stretched. Fpr a chain graﬁeq tq the outside of a cyl_lnder the
correct scaling form expected from Ref. 15. \(olume gvallable to the phaln increases more rapidly than
The zero curvature solution can then be used9into Ilnearly, i.e., ag? wherer is the d|s_tance from the cer_1tre of
the cylinder. The usual argument is that shrinkage will occur

solve for the correction due to curvature. This correction is ith bendi this addit | ilabl | q h

boundary conditions/;(0)=0 andy}(N)=— (1/3)(N/.%) excluded volume interactiongwhich promote swelling
x(u/5)23 The solution is However, this argument is inverted in the case of an
Alexander—de Gennes brush. An Alexander—de Gennes
u\?®N?(2n 1/n\? brush expands with convex curvature because at greater dis-
yi(n)= (g) B (§ N E(ﬁ) ) 10 tances from the grafting surface the volume available is sig-
] . ) ) _nificantly larger and by stretching into this volume the os-
Of most interest is the change in height upon bendingmotic pressure can be reduced. This of course costs some

1 =312

AH=ayy(N). This is stretching energy, but overall expansion is favorable with
ul23N2 1 energies described as in the blob model. The effect discussed
AH:(g R 6_RH‘2’ (1)  here is clearly related to the undulational instability of an

Alexander—de Gennes brush discussed by Solis and
indicating that the brush swells upon bending. This agree®ickett>® They found that a melt brush grafted uniformly to
well with a direct numerical minimization of the free energy a planar surface is unstable to undulations of the surface
(4) (Fig. 2. It is interesting to compare this blob prediction formed by the free ends. The swelling effect discussed here
of brush swelling with curvature with the prediction of brush almost certainly implies a similar instability exists for a

J. Chem. Phys., Vol. 105, No. 20, 22 November 1996

Downloaded-22-May-2004-t0-150.203.2.222.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://jcp.aip.org/jcp/copyright.jsp



E. M. Sevick and D. R. M. Williams: Bending of polymer brushes 9337

brush in a good solvent. Thus a planar Alexander—de Gennes 0.00 [™%
brush can lower its energy by forming small hemispherical
caps on the surface of the planar brush, where some of the _
chains splay out at the brush surface. & ~005 ]
It is possible to extend the above analysis to the case of T [ ]
bending the brush onto the outsideonvex surfaceof a £ _o0.10} ]
sphere of radiuf. In that case the free energy per chain is “g% ]
N [dz)\5? dz| 1?2 £ 015 .
FIkT= f dn(— +u.71322‘2<—) (12) © _
0 dn dn [
. . _ -0.20L ) . .
with  boundary conditions z(0)=.2 and z'3(N) 0.0 0.5 10 15 50
=u.%2?/(52%(N)). Again the height of the brush increases ' T curveture '
upon bendingFig. 2), by an amount
1 FIG. 3. The same graph as Fig. 2, but for the Flory model. Note that in this

AH= H2 13 case the brush height always decreases upon bending, but that the decrease
- 3_R 0 (13 is very small for weak bending indicating that the coefficient of the first
order term is zero.

IIl. INTERMEDIATE AND STRONG CURVATURES

In the above section we have discussed the weak bendP€rical minimization of the free enerd¥ig. 3) shows that
ing of a brush wherH,<R. In the strong bending limit higher Qrder_ terms in the curvature always produce a de-
Ho> R the differential Equatiorf9) can be analyzed using a Creéase in height upon bending.
scaling approach. In this limit we replacd/@n) by 1N and
z by H. This gives a result for the height of
H~(ca?)Y4(R/a)Y*N®4 Thus in the strong bending limit
we obtain a height which decreases at smaller bend radii and In this note we have discussed the weak convex, bending
which agrees with previous scaling theorfé$?In the strong  of polymer brushes in good solvents. In particular we have
bending limit the height decreases with increasing curvaturegiven the results for the case when the Alexander—de Gennes
as one would expect. In the intermediate case wHgi#rR  ansatz is used, i.e., all the chain ends are located at the far
we numerically minimize the free energiey and(12) (Fig. edge of the brush. Four separate cases have been considered.
2). This yields one important piece of information, i.e., thatFirst a blob model for both cylinders and spheres, and then a
the magnitude of the height increase is at most a few percemilory model for the same geometry. In the former cases to
of the planar brush height. orderH /R the brush expands, whilst in the latter cases there
is no change in the brush height to that order. In all cases the
behavior is anomalous since one expects, and more sophisti-
cated theories confirm, that the brush should shrink. Thus
although in general the Alexander—de Gennes ansatz pro-

In the above we have used a blob model for the freevides reasonable results for many brush properties, here in
energy. There is an even more primitive model which iscombination with two model free energies, it gets either the
based on a simple Flory theoty:?°In this case the stretch- sign of the effect wrong, or fails to predict any effect at all.
ing energy per chain is that expected for a simple Gaussianlowever, as noted above, systems which do behave as

V. CONCLUSION

IV. FLORY MODEL

2

7 dz) 14
+uzz anl (14

model, and the excluded volume energy per unit volume ié\lexander—de Gennes brushes have been manufactured and
kTa3c? wherec is the concentration of monomers. In the may well exhibit the anomalous behavior described here.
Flory model the free energy per chain is In this paper we have calculated the bending behavior of
polymer brushes for two different free energy models and for
E/kT= JNdn<E two different geometries using the Alexander—de Gennes an-
0 dn satz. Our calculations have shown anomalous height changes
) as a function of curvature. These calculations do not show
wherea=1 for cylmders/gndm=%3for sp[lergs. The bound- ¢ the Alexander—de Gennes ansatz always fails, but rather
ary conditions are(0)=.7 andz"*(N) =3u.2“2"“(N). In 4ot it fails for the two most commonly used free energy
this case the solution for the perturbation caused by CUNVas o dels. Ultimately it remains a useful approximation for
ture Is many brush properties but must be treated with caution if
a n (n\2 detailed brush properties are to be examined. For such de-
Y1(n)=3—H§<——( ) ) (15  tailed properties the more sophisticated SCF theories are
aR N N S . L
needed. These allow for a distribution of chain ends within
Thus sincey(N)=0 there is no change in height to first the brush and more freedom in selecting the chain stretching
order in the curvature. Again, the results using theprofile. These theories lead to a more physically reasonable
Alexander—de Gennes ansatz are anomalous. However, a riorush shrinkage upon curvature.
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