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We examine the bending of an Alexander–de Gennes polymer brush over a wide range of curvature
from weak to strong. Two different models are used, a blob model and a simpler Flory mean field
model. In both cases the height change upon bending is anomalous. In the case of a blob model the
height increases for weak bending. In the Flory model there is no height change to first order in the
curvature. This is in sharp contrast to more sophisticated theories for brushes with free ends, and
may have applications to real-life Alexander–de Gennes brushes which have been synthesized
recently. © 1996 American Institute of Physics.@S0021-9606~96!50441-1#

I. INTRODUCTION

A polymer brush is a system of polymers densely end-
grafted onto a surface.1,2 Such brushes are important in a
number of applications, most notably surface modification
and colloidal stabilization,3 and occur ubiquitously in the or-
dered phases of block copolymers.4,5 The equilibrium struc-
ture and attendant properties of these brushes is now very
well understood, particularly for brushes grafted onto planar
surfaces.6,4,7–13 Brushes grafted onto curved surfaces have
also been investigated14–19as they are important in strongly
asymmetric block copolymer systems and for chains grafted
onto rough surfaces. Other examples of curved brushes in-
clude polymers grafted to the interior pores of membranes or
to the exterior surface of colloidal particles and hairy-rod
polymers or molecular bottlebrushes. In this paper we calcu-
late the effect of bending upon two model polymer brushes.
We show that for these brushes the bending behavior is ano-
molous and that in the more sophisticated blob model swell-
ing takes place.

One of the most fundamental and easily measured prop-
erties of a polymer brush is its height. In colloidal stabiliza-
tion applications, the brush height determines the hydrody-
namic radii of the brush-coated particles and increases the
range of repulsive interactions between two particles, thereby
reducing colloidal aggregation. In a good solvent the brush
height is determined by a balance of the osmotic pressure of
the monomers, which favors large heights, and the entropic
stretching of the polymer chains, which favors small heights.
Intuitively one expects that a brush grafted onto a convex
surface will have a smaller height than one grafted to a pla-
nar surface with the same grafting density. One can under-
stand this by considering that the local accessible volume per
chain segment increases from root to brush tip, reducing the
local stretching of the chain near the tip, and hence reducing
the size of the convex-grafted brush below that of an equiva-
lent planar brush. Indeed theory confirms this idea;14–16,21

scaling predictions demonstrate a decrease in height with an

increase in grafting surface convexity. For weakly curved
surfaces, detailed self-consistent field calculations also show
a small decrease in height.

In general there are two theoretical approximations
which can be used to model polymer brushes in good sol-
vents. The one which has proven very popular in recent years
is to use self-consistent field theory~SCF!.7,8 This uses a
local osmotic pressure which is determined from the local
polymer concentration. SCF theory provides detailed infor-
mation about the internal structure of the brush, namely the
distribution of monomers and chain ends throughout the
brush body4 as well as the height of the brush; however, it
suffers from being complex and difficult to use in all but the
simplest geometries. For more complex geometries,14,15,22–24

for problems involving fluid flows or other non-equilibrium
effects9–13,18,24,25,19,20and for problems which have not been
tackled previously, it is more usual to use an earlier and
simpler kind of approach. This second theoretical
approximation,6 the Alexander–de Gennes ansatz, ignores
the detailed structure of the brush and assumes that all the
chain ends are located at the brush edge. The Alexander–de
Gennes approach has the definite advantage of simplicity and
usually gives correct answers for ‘‘bulk’’ brush properties
such as the brush height and brush modulus. However, as we
will show, for our model brushes it produces highly anoma-
lous results for a weakly bent brush, predicting that a brush
expands when bent slightly onto the outside of a cylinder or
sphere. That the Alexander–de Gennes ansatz predicts a
height-convexity relation far different from intuition and
SCF calculations is surprising and is contrary to the usual
reliance on the ansatz for first-order results.

Although it was first introduced and exploited as a theo-
retical ansatz, an Alexander–de Gennes brush has been real-
ized in practice27 using water-soluble polymers with graft-
able stickers at one end and lipid molecules at the other end.
The stickers end-graft the chain forming the root of the brush
and the lipids self-assemble into a flat membrane at the edge
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of the brush, effectively trapping all the chain ends there.
This experimentally realized brush should closely adhere to
the Alexander–de Gennes model. However, our calculation
described here ignores the lipid contribution to the free en-
ergy and thus cannot be directly applied to that system. In
general such sticky-end brushes show novel phase behavior
including lateral inhomogeneities. Here we wish to concen-
trate on the implications of the Alexander–de Gennes ansatz
and we will not discuss sticky brushes any further.

In this note we will discuss two kinds of theories for an
Alexander–de Gennes brush grafted to the outside of a
curved surface. The first is a free-energy blob model, which
is a modification of that used in the planar case by Rabin,
Alexander and Barrat.9,10 The second is a simpler Flory
model. In the following section we present the model calcu-
lations for the blob model in detail for the case of weak
bending for cylindrical and spherical brushes. The interme-
diate and strongly convex cases are presented in section 3.
The dependence of the Alexander–de Gennes brush height
upon curvature is also predicted from a simpler Flory model
and the results are described in section 4. In the last section,
we note the importance of these results in comparison with
more sophisticated theories.

II. WEAK BENDING

We consider first a blob model of the free energy for
chains grafted to the outside or convex surface of a cylinder
of radiusR ~Fig. 1!. Each chain is comprised ofN mono-
mers, each monomer having radiusa. None of our conclu-
sions depend on numerical prefactors which we thus ignore;
our conclusions are however sensitive to the exponents. The
first monomer of each chain is grafted with grafting density
~number of chains per unit area of grafting surface! s. We let
r (n) be the radial position of thenth monomer measured
from the center of the cylinder. The first, tethered monomer
is at r (1)5R and the final, free end of the monomer is at the
brush tip, r (N)5R1H, whereH is the height measured
from root to tip of the brush. A flat brush results when the
ratio of brush height to cylinder radius is zero,H/R→0, and
weakly-bent brushes correspond toH/R!1.

In the blob model, the structure of the chain is modeled
as a sequence or necklace of blobs.28,29,9,10The size of a blob

located at r , j(r ), depends upon the local stretching,
dr/dn, according to

j~r !5a5/2~dn/dr !3/2. ~1!

The number of blobs along the contour of the chain between
r and r1dr is dnb5dr/j(r ). From this structural descrip-
tion, the stretching and excluded volume contributions to the
free energy can be constructed. The stretching free energy
per chain is then given by the prescription ofkT per blob

Fstretch5kTE
R

R1H

drj21~r !5kTa25/2E
R

R1H

drS drdnD
3/2

.

~2!

Each blob acts like a hard sphere of radiusj and conse-
quently, we may write the excluded volume energy per unit
volume askTj3c2, wherec is the concentration of blobs. In
a lengthL of the cylinder there areNc52pRLs chains and
in a radial volume element of sizedV52prLdr there are
dr/j(r ) blobs per grafted chain. Hence, the local concentra-
tion of blobs isc5sRr21j21 and the excluded volume en-
ergy per chain is

Fev5kTsRE
R

H1R

drjr21

5kTsRa5/2E
R

R1H

drr21S drdnD
23/2

. ~3!

The total free energy per chain is then

F/kT5E
0

N

dnS dzdnD
5/2

1uRz21S dzdnD
21/2

, ~4!

where we have definedu[sa2, R[R/a and z[r /a and
have changed the integration variable ton via
dr5(dr/dn)dn.

We now require the trajectory of the chain,r (n),
1,n,N, which minimizes the total free energy. This equi-
librium trajectory is one for which any small deviation from
the trajectoryz(n)→z(n)1d(n) gives zero change in the
free energy to orderd. The first order change for such a
perturbation is

DF/kT5E
0

N

dnS 2uRz22z821/2d1
5

2
z83/2d8

2
1

2
uRz21z823/2d8D , ~5!

where the prime means (d/dn). The above equation can be
simplified by noting that the two terms ind8 may be inte-
grated by parts

DF/kT52E
0

N

dndS uRz22z821/21
d

dn F52 z83/2
2
1

2
uRz21z823/2G D , ~6!

where the two boundary terms vanish due to the boundary
conditionsz(0)5R/a and z83(N)5Ru/(5z(N)). The first

FIG. 1. The geometry used for the calculation for a bent brush.
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boundary condition arises from the fact that the chain end is
tethered to the cylinder of radiusR. The second represents a
balance between the spring force,5

2z8
3/2, and the osmotic

force, 12uRz21z823/2 for the final, free monomer. The con-

dition DF50 for anyd(n) applied to~6! yields a differential
equation for the equilibrium trajectory

Ruz22z821/21
d

dn F52 z83/22 1

2
uRz21z823/2G50. ~7!

It is convenient to recast this equation with a change vari-
ables fromz(n) to y(n) via y(n)[z(n)2R, wherey(n) is
the chain trajectory, expressed as a dimensionless radial dis-
tance between a monomer and the grafting surface

Ru~y1R!22y821/21
d

dn F52 y83/22
1

2
uR~y1R!21y823/2G

50. ~8!

The chain trajectory described by Equation~8! is valid
for any curvature. We are interested here in weak curvatures
so we expand the solution in powers ofh[H0 /R, where
H0 is the height of the unbent brush. Writing
y(n)5y0(n)1y1(n)1O(h2), where y0(n) is of order h0

andy1(n) is of orderh
1, and collecting the terms of different

orders, yields an equation for weakly bent, convex brushes

d

dn F52 y083/22 1

2
uy08

23/2G1
d

dn F154 y08
1/2y181

3

4
uy08

25/2y18

1
1

2
uR21y0y08

23/2G1uR21y08
21/250 ~9!

with boundary conditions y0(0)1y1(0)50 and
y08

32 (u/5)13y08
2y181 (u/5)R21y050 atn5N. This equa-

tion can be easily solved for the flat brush: up to orderR0

the solution isy0 is a constant. Thus the flat brush is uni-
formly stretched. This constant is found from the boundary
condition y085(u/5)1/3, and thus the solution for the flat
brush isy0(n)5n(u/5)1/3. The height of the flat brush in
dimensional units is thenH05Na(sa2/5)1/3. This has the
correct scaling form expected from Ref. 15.

The zero curvature solution can then be used in~9! to
solve for the correction due to curvature. This correction is
given by the equationy1952R21(u/5)2/3, subject to the
boundary conditionsy1(0)50 and y18(N)52 (1/3)(N/R)
3(u/5)2/3. The solution is

y1~n!5S u5D
2/3N2

R
S 23 n

N
2
1

2 S nND 2D . ~10!

Of most interest is the change in height upon bending,
DH5ay1(N). This is

DH5S u5D
2/3N2

6R
5

1

6R
H0
2 ~11!

indicating that the brush swells upon bending. This agrees
well with a direct numerical minimization of the free energy
~4! ~Fig. 2!. It is interesting to compare this blob prediction
of brush swelling with curvature with the prediction of brush

shrinkage that is predicted by the SCF theory,21 DH52 1
8

H0
2/R. The blob result has the same magnitude~to within a

numerical prefactor! as that predicted by the SCF theory, but
it is of the opposite sign.

Although the swelling of a brush obeying the
Alexander–de Gennes ansatz is both anomalous and surpris-
ing it is not totally unexpected and can be ‘‘explained’’ as
follows. We examine the volume available to a single chain
in its trajectory from the grafting surface to the brush tip.
This volume controls the osmotic pressure term in the free
energy, i.e., the more the volume that is available the smaller
the osmotic pressure~for a given number of monomers!. For
a planar brush this volume increases linearly with distance
from the grafting surface. This implies that the volume avail-
able per unit distance along the trajectory is a constant. Con-
sequently, no place in the brush is more favorable as a mono-
mer position than another and a planar brush is uniformly
stretched. For a chain grafted to the outside of a cylinder the
volume available to the chain increases more rapidly than
linearly, i.e., asr 2 wherer is the distance from the centre of
the cylinder. The usual argument is that shrinkage will occur
with bending as this additional available volume reduces the
excluded volume interactions~which promote swelling!.
However, this argument is inverted in the case of an
Alexander–de Gennes brush. An Alexander–de Gennes
brush expands with convex curvature because at greater dis-
tances from the grafting surface the volume available is sig-
nificantly larger and by stretching into this volume the os-
motic pressure can be reduced. This of course costs some
stretching energy, but overall expansion is favorable with
energies described as in the blob model. The effect discussed
here is clearly related to the undulational instability of an
Alexander–de Gennes brush discussed by Solis and
Pickett.30 They found that a melt brush grafted uniformly to
a planar surface is unstable to undulations of the surface
formed by the free ends. The swelling effect discussed here
almost certainly implies a similar instability exists for a

FIG. 2. The change in heightDH/H0 plotted against the curvatureH0 /R for
a brush grafted to the outside of a cylindrical brush~open circles! and a
spherical brush~filled circles!. The results were found by a direct numerical
minimization of the free energy~4! using a blob model. Note that in each
case the height initially increases upon bending. The increase is however a
maximum of a few percent.
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brush in a good solvent. Thus a planar Alexander–de Gennes
brush can lower its energy by forming small hemispherical
caps on the surface of the planar brush, where some of the
chains splay out at the brush surface.

It is possible to extend the above analysis to the case of
bending the brush onto the outside~convex surface! of a
sphere of radiusR. In that case the free energy per chain is

F/kT5E
0

N

dnS dzdnD
5/2

1uR2z22S dzdnD
21/2

~12!

with boundary conditions z(0)5R and z83(N)
5uR2/(5z2(N)). Again the height of the brush increases
upon bending~Fig. 2!, by an amount

DH5
1

3R
H0
2. ~13!

III. INTERMEDIATE AND STRONG CURVATURES

In the above section we have discussed the weak bend-
ing of a brush whenH0!R. In the strong bending limit
H0@R the differential Equation~9! can be analyzed using a
scaling approach. In this limit we replace (d/dn) by 1/N and
z by H. This gives a result for the height of
H;(sa2)1/4(R/a)1/4N3/4. Thus in the strong bending limit
we obtain a height which decreases at smaller bend radii and
which agrees with previous scaling theories.15,14In the strong
bending limit the height decreases with increasing curvature,
as one would expect. In the intermediate case whenH0'R
we numerically minimize the free energies~4! and~12! ~Fig.
2!. This yields one important piece of information, i.e., that
the magnitude of the height increase is at most a few percent
of the planar brush height.

IV. FLORY MODEL

In the above we have used a blob model for the free
energy. There is an even more primitive model which is
based on a simple Flory theory.6,1,29 In this case the stretch-
ing energy per chain is that expected for a simple Gaussian
model, and the excluded volume energy per unit volume is
kTa3c2 wherec is the concentration of monomers. In the
Flory model the free energy per chain is

F/kT5E
0

N

dnS dzdnD
2

1uRaz2aS dzdnD
21

, ~14!

wherea51 for cylinders anda52 for spheres. The bound-
ary conditions arez(0)5R andz83(N)5 1

2uR
az2a(N). In

this case the solution for the perturbation caused by curva-
ture is

y1~n!5
a

3aR
H0
2S nN2S nND 2D . ~15!

Thus sincey(N)50 there is no change in height to first
order in the curvature. Again, the results using the
Alexander–de Gennes ansatz are anomalous. However, a nu-

merical minimization of the free energy~Fig. 3! shows that
higher order terms in the curvature always produce a de-
crease in height upon bending.

V. CONCLUSION

In this note we have discussed the weak convex, bending
of polymer brushes in good solvents. In particular we have
given the results for the case when the Alexander–de Gennes
ansatz is used, i.e., all the chain ends are located at the far
edge of the brush. Four separate cases have been considered.
First a blob model for both cylinders and spheres, and then a
Flory model for the same geometry. In the former cases to
orderH0 /R the brush expands, whilst in the latter cases there
is no change in the brush height to that order. In all cases the
behavior is anomalous since one expects, and more sophisti-
cated theories confirm, that the brush should shrink. Thus
although in general the Alexander–de Gennes ansatz pro-
vides reasonable results for many brush properties, here in
combination with two model free energies, it gets either the
sign of the effect wrong, or fails to predict any effect at all.
However, as noted above, systems which do behave as
Alexander–de Gennes brushes have been manufactured and
may well exhibit the anomalous behavior described here.

In this paper we have calculated the bending behavior of
polymer brushes for two different free energy models and for
two different geometries using the Alexander–de Gennes an-
satz. Our calculations have shown anomalous height changes
as a function of curvature. These calculations do not show
that the Alexander–de Gennes ansatz always fails, but rather
that it fails for the two most commonly used free energy
models. Ultimately it remains a useful approximation for
many brush properties but must be treated with caution if
detailed brush properties are to be examined. For such de-
tailed properties the more sophisticated SCF theories are
needed. These allow for a distribution of chain ends within
the brush and more freedom in selecting the chain stretching
profile. These theories lead to a more physically reasonable
brush shrinkage upon curvature.

FIG. 3. The same graph as Fig. 2, but for the Flory model. Note that in this
case the brush height always decreases upon bending, but that the decrease
is very small for weak bending indicating that the coefficient of the first
order term is zero.
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