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5.0 Thermodynamics of Polymer Solutions

In this section, we investigate the solubility of polymers in small molecule solvents. Solubility,

whether a chain goes “into solution”, i.e. is dissolved in solvent, is an important property. Full

solubility is advantageous in processing of polymers; but it is also important for polymers to be

fully insoluble - think of plastic shoe soles on a rainy day! So far, we have briefly touched upon

thermodynamic solubility of a single chain- a “good” solvent swells a chain, or mixes with the

monomers, while a“poor” solvent “de-mixes” the chain, causing it to collapse upon itself.

Whether two components mix to form a homogeneous solution or not is determined by

minimisation of a free energy. Here we will express free energy in terms of canonical variables

{T, P, N}, i.e., temperature, pressure, and number (of moles) of molecules. The free energy

expressed in these variables is the Gibbs free energy

G ≡ G(T, P, N). (1)

In previous sections, we referred to the Helmholtz free energy, F , the free energy in terms of

the variables {T, V, N}. Let ∆Gm denote the free eneregy change upon homogeneous mix-

ing. For a 2-component system, i.e. a solute-solvent system, this is simply the difference

in the free energies of the solute-solvent mixture and pure quantities of solute and solvent:

∆Gm ≡ G(T, P, N1, N2) − (G0(T, P, N1) + G0(T, P, N2)), where the superscript 0 denotes the

pure component. If the Gibbs free energy of mixing is negative, ∆Gm < 0, the solute will go

into solution; if the Gibbs free energy is positive, ∆Gm > 0, then the solute and solvent will

not mix and remain as two pure “phases”. ∆Gm is the sum of enthalpic and entropic terms,

and consequently, a sensitive balance between the entropy of mixing, ∆Sm, and the enthalpy

of mixing, ∆Hm, determines the solubility:

∆Gm = ∆Hm − T∆Sm.

As the entropy change upon mixing is always positive, −T∆Sm is always negative: entropy

always favours dissolution or mixing. In cases where ∆Hm < 0, i.e., where the interactions

between solute and solvent favour mixing, then ∆Gm will be negative for all temperatures T

and the solute and solvent will mix favourable at all temperatures and compositions. How-

ever, where the interactions disfavour mixing, ∆Hm > 0, then whether the solute and solvent

mix depends upon the balance of the favourable entropy gain of mixing and the disfavourable

enthalpic penalty of mixing, moderated by temperature, T . At lower temperatures, the en-

thalpic term dominates and no mixing occurs. In contrast, at high temperatures, the entropic

term dominates and mixing of solute and solvent occurs, either partially (at moderate temper-

atures) or homogeneously (at higher temperatures). “Partial mixing” or “phase separation”

occurs when the mixing proceeds through the formation of 2 phases, each phase containing a

homogeneous mixture of solute and solvent, but with the compositions differing in each of the

phases.
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In this section, we are going to explore the thermodynamics of phase separation of bi-

nary mixtures made of two components, solute and solvent. First, we need to understand

thermodynamic-based constraints/rules that apply to all solute/solvent systems, including sim-

ple liquid mixtures, polymer-solvent solutions, or even metallic mixtures. There exists a basic

framework that applies generally to all of these systems. This framework starts with a given

expression for ∆Gm in terms of the number of moles of solvent, N1, and solute, N2, and tem-

perature, T , and prescribes how mixing, partial mixing, and no-mixing is predicted from the

expression for ∆Gm. This is the topic of section 5.1. Two solution models will be presented in

sections 5.2 and 5.3: the Regular Solution model for equi-sized solvent and solute molecules,

and the Flory-Huggins Solution (FH) model, an extension of the Regular Solution model to

polymeric solutes. Both of these models are simplistic, but capture the essential physics of the

dissolution process. Finally in section 5.4, we focus upon the solubility of polymers in solution,

providing some solubility features that are not predicted by simplistic FH model.

5.1 Thermodynamic framework for understanding partial-mixing

Assume an expression for ∆Gm is known as a function of the total number of moles, N ,

comprised of the number of moles of solvent, N1, and the number of moles of solute, N2:

N ≡ N1 + N2.

Furthermore, let x1 an x2 represent the total mole fractions of solvent and solute, respectively:

1 ≡ x1 + x2.

That is, if you mix N1 moles of solvent with N2 moles of solute, your total mole fraction,

irrespective of the formation of phases, is x1 = N1/N and x2 = N2/N.

5.1.1 ∆Gm/N at high temperatures where homogeneous mixing occurs

Figure 1 shows a representative ∆Gm/N versus x1 at a fixed temperature T , for a completely

homogeneously mixed system. There are a few things to note from this figure:

• ∆Gm < 0 for all x1, indicating that solvent and solute can be mixed in any proportion to

create a mixed solution of arbitrary concentration.

• The curvature of ∆Gm versus x1 (or the second derivative of ∆Gm with respect to x1) is

positive for all x1: d2(∆Gm/N)/dx2
1 > 0, or the “curve holds water”. This indicates that

the mixing is homogeneous over the entire composition range.

• ∆Gm = 0 for x1 = 0 and x1 = 1, indicating that there is no change in the free energy of

mixing for a solution comprised of a pure component.

There is more information available from Figure 1 when considering two general thermodynamic

relations.
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Figure 1: ∆Gm/N versus mole fraction of species 1, x1,
for a binary system.

The first of these relations is effec-

tively a definition: the change in the

free energy of mixing for a homoge-

neous mixture at composition x1 and

x2 = 1 − x1 at constant T and P is

∆Gm/N = x1(µ1 − µ◦
1) + x2(µ2 − µ◦

2).

(2)

Here µ1 is the chemical potential of

species 1 in the homogeneous mixture

and µ◦
1 is the chemical potential of

species 1 in its pure, undiluted state.

You will recall that the chemical poten-

tial is defined as

µ1 =
( ∂G

∂N1

)

T,P,N2

, (3)

i.e., it is the change in the free energy brought about by infinitesimally increasing the amount

of species 1 while keeping T , P , and N2 constant. It is a partial molar (intensive) property:

G◦
1 = µ◦

1N1

G◦
2 = µ◦

2N2

G = µ1N1 + µ2N2.

such that ∆Gm = G − (G◦
1 − G◦

2) yields equation 3.

The second relation is the Gibbs-Duhem equation, which states that in a closed system, at

constant T , P , and total number of moles N ,

x1dµ1 + x2dµ2 = 0. (4)

Physically this says that any change on the partial molar Gibbs free energy of species 1 must

be balanced by a restoring change in the partial molar Gibbs free energy or chemical potential

of species 2, and that this balance is determined by the molar amounts of species 1 and 2.

Eqns 2 and 4 are thermodynamic constraints that MUST adhere to binary systems at

constant T and P . Taken together, these equations can be re-written with a little algebra as

µ1 − µ◦
1 = ∆Gm/N + x2

d(∆Gm/N)

dx1
(5)

and

µ2 − µ◦
2 = ∆Gm/N + x1

d(∆Gm/N)

dx2
. (6)

You can simply derive eqn 5 by taking the derivative of both sides of eqn 2:

d∆Gm/N

dx1
=

d

dx1

(

x1(µ1 − µ◦
1)

)

+
d

dx1

(

x2(µ2 − µ◦
2)

)

= (µ1 − µ◦
1) + x1

dµ1

dx1
+

dx2

dx1
(µ2 − µ◦

2) + x2
dµ2

dx1
.
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By Gibbs-Duhem, eqn 4, the second and fourth terms on the RHS of the last expression sum

to 0 so that

d∆Gm/N

dx1
= (µ + 11 − µ◦

1) +
dx2

dx1
(µ2 − µ◦

2)

= (µ1 − µ◦
1) − (µ2 − µ◦

2).

Now, we can rewrite the last expression as

(µ2 − µ◦
2) = (µ1 − µ◦

1) −
d∆Gm/N

dx1

and substitute this into eqn 2 to yield

∆Gm/N = x1(µ1 − µ◦
1) + x2

(

(µ1 − µ◦
1) −

d∆Gm/N

dx1

)

,

and

∆Gm/N = (µ1 − µ◦
1) − x2

d∆Gm/N

dx1
(7)

You will recognise this last equation as eqn 5, simply rearranged. You can similarly derive eqn

6.

Eqns 5 and 6 are thermodynamic relations that tell you how the chemical potential of each

species changes as it goes from the initial pure system to the homogeneous mixture. You will

also see that eqns 5 and 6, rearranged as in eqn 7, correspond to the tangents of the ∆Gm/N

versus x1 curve. That is, eqn 7 is a line of the form

y = mx + b

where m is the slope and b is the intercept (or the value of y at x = 0). The slope is simply the

tangent to the curve, ∆Gm/N , or d(∆Gm/N)/dx1, and the intercept is simply µ1 − µ◦
1. Recog-

nising that x2 = 1 − x1 and that d(∆Gm/N)/dx1 = −d(∆Gm/N)/dx2, you can additionally

show that eqn 6 is the identical line given by eqn 5 but additionally provides the intercept at

x1 = 1 of µ2 − µ◦
2.

This is valuable. This construction tells you the chemical potential of the species in homo-

geneous mixtures at ANY composition.

5.1.2 ∆Gm/N at temperatures where partial mixing occurs.

Figure 2 shows a representative ∆Gm/N versus x1 curve at a fixed temperature, T , for a

partially mixed system where two phases of different composition co-exist. There are a few

things to note from this figure:

• ∆Gm < 0 for all x1, indicating that solvent and solute can be mixed in any proportion to

create a mixed solution.

• ∆Gm = 0 for x1 = 1 or x1 = 0, indicating that there is no change in the Gibbs free energy

of mixing for a pure component.
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• The curvature of ∆Gm versus x1 (or the second derivative of ∆Gm with respect to x1) is

negative, d2(∆Gm/N)/dx2
1 < 0 over an intermediate concentration range, or the “curve

spills water”. This indicates that the mixing is not homogeneous over this particular range

for composition ranges. Homogeneous solutions can be made only for those compositions

where d2(∆Gm/N)/dx2
1 > 0

Figure 2: ∆Gm/N versus mole fraction of species 1, x1

for a binary system at a temperature where partial mixing
occurs. At a composition noted by the blue box on the
∆Gm/N curve, the solution can lower its energy by sep-
arating into two mixed phases. On first “guess-timate”,
you might expect that the composition of the phases is
given by the local minima of the ∆Gm/N curve, i.e.,
where ∆Gm/N = 0. However the tangents to these min-
ima (grey dashed lines) suggest that the chemical species
differs in the phases. This cannot happen: the compo-
sitions of the co-existing phases must be such that the
chemical potential of each species is identical. That is,
there must be one tangent that “kisses” the ∆Gm/N
curve at two compositions. These binodal compositions
are not the composition at the local minima.

The thermodynamic “mantra” that

systems evolve to lower their free en-

ergy applies here. Consider that you

are trying to make a homogeneous mix-

ture of composition x1, where the cur-

vature of ∆Gm/N is negative. From

Figure 2, you can see that the system

can lower its free energy by separating

into two phases. However, the composi-

tion of these phases is NOT given by

the minima of ∆Gm/N . This is be-

cause the system has to minimise its

free energy with an additional thermo-

dynamic constraint: the chemical po-

tential of each species in different phases

MUST BE IDENTICAL. That is, the

compositions are given by a single tan-

gent to the ∆Gm/N curve so that µ1−µ0
1

is the change in the chemical potential

of species 1 irrespective of which phase a

molecule of species 1 partitions to. Like-

wise, µ2 − µ0
2 is the chemical potential

change of species 2. The compositions at which the tangent “kisses” the ∆Gm/N curve are

referred to as the binodals and are the compositions of the two co-existing phases.

So now we can describe the mixing or partial mixing that results at this temperature over

the entire compositions range. First, let xb1
1 be the binodal composition of the phase lean in

species 1, and xb2
1 be the binodal composition of the phase rich in species 1. If we try to make

a homogeneous mixture with mole fractions in the ranges 0 < x1 < xb1
1 or xb2

1 < x1 < 1, we will

be successful. The change in chemical potential of the species is found by constructing the line

that is tangent to ∆Gm/N at x1 as described in Section 5.1.1. However, if we try to construct

a homogeneous solution with composition in the unstable composition range xb1
1 < x1 < xb2

1 ,

we will fail and instead achieve two separated or unmixed phases with compositions xb1
1 and

xb2
1 . The relative amount or volume of these two phases will depend upon the total amounts of

species 1 and 2 added. For mole fractions a little larger than xb1
1 , there will be one majority

phase of composition xb1
1 and a small or minority phase of compositions xb2

1 . As more species 2

is added, the concentrations of the two phases remains constant at xb1
1 and xb2

1 ,but the volume

of the minority phase will grow. At total mole fractions a little smaller than xb2
1 , the minority
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phase will be of composition xb1
1 and the majority phase will be of composition xb2

1 . The relative

amounts of the binodal phases is determined by a mole balance.

If partial mixing or phase separation occurs at any given temperature, then there exist

inflection points in the ∆Gm/N versus x1 curve. An inflection point occurs at a value of x1

where the curvature changes sign, or d2(∆Gm/N)/dx2
1 = 0. If partial mixing occurs at a given

temperature, then there will be exactly two inflection points, referred to as spinodals, Figure

3. The spinodal compositions, i.e., the mole fractions at which d2(∆Gm/N)/dx2
1 = 0, lie inside

the unstable composition range, xb1
1 < x1 < xb2

1 . That is, if xspinodal1
1 represents the spinodal

composition that is lean in species 1, then

xb1
1 < xspinodal1

1 < x1 < xspinodal2
1 < xb2

1 .

For a total concentration that lies between the spinodals, d2(∆Gm/N)/dx2
1 < 0. Suppose you

could create a “homogeneous” solution of concentration, x1, xspinodal1
1 < x1 < xspinodal2

1 ; this

solution would be unstable to small fluctuations in the local concentration. Any local fluctuation

in concentration would lower the energy of the solution, see figure 4(a), and consequently the

homogeneous solution would “spontaneously decompose” and phase separate. The kinetics

of this process is referred to as spinodal decomposition and it can be studied, not in simple

solutions where the decomposition is very fast, but in metallic systems where the kinetics are

limited by the small diffusion coefficients.

spinodals

binodals

Figure 3: ∆Gm/N versus mole fraction of species 1, x1

for a binary system at a temperature where particle mix-
ing occurs. The compositions over which homogeneous
mixtures are unstable are shown in the shaded region,
bounded by the compositions at the binodals. The spin-
odals or inflection points in the ∆Gm/N curve, bound the
region of instability (center orange). Between the spin-
odal and binodal compositions lies a region of metasta-
bility, where a homogeneous mixed solution is stable to
only small fluctuations in local concentration.

For total concentrations that lie be-

tween the binodal-spinodal, i.e. xb1
1 <

x1 < xspinodal1
1 and xspinodal2

1 < x1 < xb2
1 ,

the curvature is positive. Thus a homo-

geneous solution in these concentration

ranges will phase separate, but will do so

more slowly. This is because phase sep-

aration will lower the free energy; how-

ever, the homogeneous solution is stable

to small fluctuations in the local concen-

tration, see Figure 4(b). We say that

the solution is metastable. Only large

local fluctuations will lower the energy

and consequently, as large fluctuations

are not as frequent as smaller fluctua-

tions in the concentration, the process

of phase separation is slow in compar-

ison to spinodal decomposition. The

process by which these metastable so-

lutions phase separate is referred to as

nucleation and growth.
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Figure 4: A graphical explanation why negative curvature leads to instantaneous de-mixing while
positive curvature in ∆Gm/N is indicative of metastable mixtures. Shown is a model ∆Gm/N curve
that has both (a) negative and (b) positive curvature. Let the dark circles represent hypothetical,
homogeneous mixtures which are unstable and have free energy g0. Consider a local concentration
fluctuation of magnitude ±δ, leading to local partial de-mixing to transient phases (lighter circles)
with free energies of g(δ) and g(−δ). (a) Under negative curvature, the solution is unstable to the
small local fluctuations, i.e., g(δ) + g(−δ) < 2g0. You can see from a simple Taylor expansion (g(δ) =
g0 + δg′ + δ2g′′ + . . .) that in order for the energy of the new phases to be lower, or g(δ)+ g(−δ) < 2g0,
that the curvature has to be negative, or g′′ < 0. (b) Under positive curvature, the solution is
stable to small local concentration fluctuations i.e. g(δ) + g(−δ) > 2g0. Again, inspection of the
Taylor expansion shows that the free energy under small fluctuations is greater than the homogeneous
mixture if g′′ > 0.

Figure 5: ∆Gm/N versus x1 for a range of temperatures,
T1 < T2 < T3, T4, T5. Arrows indicate the binodals found
at the two temperatures T1 and T2. T3 corresponds to
a critical temperature at which the spinodals merge and
mixing occurs. For this collection of curves, you can con-
struct a phase diagram showing the composition of phases
as a function of temperature.

Figure 5 shows several ∆Gm/N -

composition curves at different tempera-

tures. As the temperature increases, the

unstable concentration range shrinks as

the inflection points, or spinodals ap-

proach one another. At a critical tem-

perature, Tc, the spinodals coalesce and

the unstable region disappeaars, Tc is

found as that temperature at which

d

dx1

d2∆Gm/N

dx2
1

= 0 (8)

A solution that is more prone to de-

mixing is one that has a higher Tc. The

higher Tc, the more difficult it is to get

the solute into solution.
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5.2 The Regular Solution Model for ∆Gm/N

The Regular Solution Model (RSM) provides a fundamental model for the mixing of equi-size

solutes and solvents. The RSM is based upon simple expressions for the enthalpic and entropic

contributions to the free energy,

G = H − TS,

constructed using a lattice whose sites are filled with solute and solvent molecules. The entropy

change of mixing solute and solvent molecules is found by counting the number of different ways

of randomly placing N1 solvent molecules and N2 solvent molecules on a lattice of N = N1 +N2

sites:

∆Sm = kB ln [
N !

N1!N2!
] − kB ln [

N1!

N1!
] − kB ln [

N2!

N2!
] (9)

where the last two terms are the number of ways of filling a lattice entirely with indistinguishable

solvent or solute molecules, respectively. Approximating the logarithmic terms of the factorials

with ln N ! ∼ N ln N − N and converting to fractions of molecules yields

∆Sm

kB

= −N(x1 ln x1 + x2 ln x2). (10)

To construct the enthalpic contribution, we assume that we are given the enthalpic energies of

solvent-solvent, solvent-solute, and solute-solute molecule pairs: ǫ11, ǫ12, and ǫ22. The enthalpy

is then

H = N11ǫ11 + N12ǫ12 + N22ǫ22

where N11 is the number of nearest-neighbor solvent-solvent pairs on the lattice, N12 is the

number of nearest-neighbor solvent-solute pairs, and N22 is the number of nearest-neighbor

solute-solute pairs on the lattice. You can approximate these numbers as the molecules are

placed randomly on the lattice. N11 is the number of solvent molecules times the probability

of finding a solvent molecule on one of the z nearest-neighbor lattice sites, zx1, divided by 2 to

correct for double-counting:

N11 = N1 ×
zx1

2
.

Likewise, the number of nearest-neighbor pairs of solvent-solute and solute-solute on the lattice

are

N22 = N2 ×
zx2

2
,

N12 = N1 × zx2.

Thus the change in enthalpy upon mixing will be

∆Hm = (N11 − N0
11)ǫ11 + (N12 − N0

12)ǫ12 + (N22 − N0
22)ǫ22,

where the superscript ◦ denotes the number of pairs in a pure solution of solvent or solute, or

∆Hm = Nx1x2 × z(ǫ12 −
ǫ11

2
− ǫ12

2
).
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The last factor in the above expression is often cast as B/NA where NA is Avogadro’s number.

Combining the enthalpic and entropic terms gives the RSM model

∆Gm/N =
B
NA

x1x2 + kBT (x1 ln x1 + x2 ln x2),

or if N is taken to to be the number of moles and xi the mole fraction, the RSM yields

∆Gm/N = Bx1x2 + RT (x1 ln x1 + x2 ln x2). (11)

Equation 12 is a model that is symmetric about x1 = 0.50. This is a result of the assumption

of equi-sized solutes and solvents. It is possible to include different sizes of solutes and solvents

in a similar analysis and achieve a model ∆Gm/N that is asymmetrical in composition. This

is referred to as the Hildebrand-Scott Solution Theory for solute-solvent molecules that differ

in size, but not by much. Clearly, for polymer solution theory, the solute (polymer) molecule

is much larger than the size of a solvent molecule.

5.3 The Flory Huggins Model for ∆Gm/N

The Flory-Huggins Model (FH) for polymer solutions is effectively a modification of the RSM

to account for the large size of the solute or polymer molecule, relative to the solvent molecule.

FH is a lattice-based model. The sites of the lattice are not filled with solvent/solute randomly,

but rather with solvent and monomer units. The monomer units cannot be placed randomly,

as they must be linked linearly to form chains of N units. Thus the FH is a lattice-based

model where the sites of the lattice are filled with N1 solvent molecules and NN2 monomer

units where N2 is the number of polymer molecules.

5.3.1 ∆Sm for Flory-Huggins

To determine ∆Sm, we need to count the number of ways of placing N2 polymers, each of N
monomers, on a lattice. We do this by considering the number of ways of placing the first

chain, the second chain, etc.

Consider placement of the first chain in an empty lattice of N sites. There are N possible

sites to place the first monomer. The second monomer must be in one of the z nearest-neighbor

sites that are empty. The probability that any site is empty is (N − 1)/N so that the number

of ways of placing the first two monomers of the first chain is

N × z
N − 1

N
.

The number of ways of placing the third monomer is z−1 (the chain cannot lie on top of itself,

thus there is one less vertex available for occupation) times the probability that these sites are

empty, which is taken as the probability that any site is empty, (N −1)/N . The approximation

that the probability that a site is empty is equivalent to the average or random occupancy of

the entire lattice is the mean-field approximation. It is an oversimplification, but it allows us

to count the configurations.
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The number of ways of putting all N monomers of the first chain, Ω1 is

Ω1 = N × z
(N − 1

N

)

× (z − 1)
(N − 2

N

)

× (z − 1)
(N − 3

N

)

× . . . × (z − 1)
(N −N − 1

N

)

.

For the second chain, it is

Ω2 = (N −N ) × z
(N −N − 1

N

)

× (z − 1)
(N −N − 2

N

)

× (z − 1)
(N −N − 3

N

)

×

. . . × (z − 1)
(N − 2N − 1

N

)

.

For the third chain, it is

Ω3 = (N − 2N ) × z
(N − 2N − 1

N

)

× (z − 1)
(N − 2N − 2

N

)

× (z − 1)
(N − 2N − 3

N

)

× . . . × (z − 1)
(N − 3N − 1

N

)

,

and for the last chain it is

ΩN2
= (N − (N2 − 1)N ) × z

(N − (N2 − 1)N − 1

N

)

× (z − 1)
(N − (N2 − 1)N − 2

N

)

×

(z − 1)
(N − (N2 − 1)N − 3

N

)

× . . . × (z − 1)
(N − N2N − 1

N

)

.

The total number of configurations, Ωm is

Ωm = Ω1 × Ω2 × . . . × ΩN2

=
( z

z − 1

)N2
(z − 1

N

)(N−1)N2

N !.

We further divide by N1 and N2 as the molecules are indistinguishable:

Ωm =
( z

z − 1

)N2
(z − 1

N

)(N−1)N2 N !

N1!N2!
. (12)

We also need to find the number of configurations of the initial pure solvent and initial pure

polymer. For the pure solvent, it is simply the number of ways we can put N1 indistinguishable

solvent molecules only N1 sites: one way. For the pure polymer, the number of ways of putting

N2 chains onto NN2 sites is found from Ωm where the total number of sites is set to NN2 and

N1 = 0, resulting in

Ω0 =
( z

z − 1

)N2
(z − 1

N

)(N−1)N2 (NN2)!

N2!
. (13)

The change in entropy upon mixing is found from

∆Sm = kB ln
[Ωm

Ω0

]

,

equations (12) and (13), and Stirling’s approximation (lnx! ∼ x lnx − x):

∆Sm = −R(N1 ln
(N1

N

)

+ N2 ln
(NN2

N

)

), (14)

where we use the gas constant R instead of kB as we let N1 and N2 represent the number of moles

(rather than number of molecules). Because mole fractions of polymers can be exceptionally
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small, it is more convenient to express concentrations of polymer solutions in terms of volume

fractions:

φ1 =
N1

N1 + NN2
,

φ2 =
NN2

N1 + NN2
,

resulting in

∆Sm = −R(N1 + NN2)(φ1 ln φ1 +
φ2

N ln φ2). (15)

5.3.2 ∆Hm for Flory-Huggins

In counting the number of ways of putting a polymer molecules, each of N monomers, onto a

lattice , we assumed that the local concentration of monomer was equivalent to the global or

average lattice concentration. This was the mean field approximation. This approximation is

exactly the same approximation used to find ∆Hm for the Regular Solution Model. Hence, FH

and RSM use the same enthalpic term:

∆Hm = (N1 + NN2)Bφ1φ2. (16)

5.3.3. The Flory Huggins model for ∆Gm/N

Combining the FH entropy of mixing and the standard RS enthalpy of mixing yields the FH

solution theory for polymers:

∆Gm

N
= Bφ1φ2 + RT (φ1 ln φ1 +

φ2

N ln φ2).

As written above, this equation is comparable to the free energy of mixing from the Regular

Solution Model. Notice that the expressions differ in two ways: first, FH is cast in volume

fractions rather than mole fractions, and second, FH is no longer symmetric in concentration

due to the 1/N factor in the entropy term. We need to do one more thing before completing

this derivation of FH: insert the Flory-Huggins parameter, χ, which is defined as

χ =
B

RT
, (17)

so that the Flory-Huggins free energy of mixing is:

∆Gm

NRT
= χφ1φ2 + φ1 ln φ1 +

φ2

N ln φ2. (18)

Now, the mechanics of determining phase behaviour from eqn 18 remains unchanged and are

listed below:

1. To determine if partial de-mxing or phase separation occurs at any given temperature T ,

check to see if there are inflection points in ∆Gm/(NRT ). A simple way of doing this is

to plot ∂2(∆Gm/(NRT ))/∂φ2
1 versus φ1 or equivalently ∂2(∆Gm/(NRT ))/∂φ2

2 versus φ2.

If there is phase separation then:
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(a) The spindoal compositions are given by the intersection of ∂2(∆Gm/(NRT ))/∂φ2
1

versus φ1 with the composition coordinate.

(b) The binodal compositions are given by the double intersection of ∆Gm/(NRT ) with

the thermodynamic constraints. 1

µ1 − µ◦
1

RT
= ∆Gm/(NRT ) + φ2

(∂(∆Gm/(NRT )

∂φ1

)

and
µ2 − µ◦

2

RT
= ∆Gm/(NRT ) + φ1

(∂(∆Gm/(NRT )

∂φ2

)

.

(c) The critical temperature, Tc, is found at the temperature at which the spinodals

merge into one compositions, Φc
2. These are found from

∂

∂φ1

(∂2(∆Gm/(NRT )

∂φ2
1

)

= 0.

2. If there is no phase separation, then the solution is completely stable as a homogeneous

mixture.

We expect that the longer the chains are, i.e. the larger the number of monomers per chain,

N , the more difficult it is to completely solubilise them in a homogeneous mixture. Longer

chains are more difficult to keep in solution. This is because their entropy of mixing is not

as large as the entropy of mixing for smaller chains. You can see this from the FH model by

inspecting how Tc varies with N . Tc is found as that temperature at which the spinodals merge,

∂

∂φ1

(∂2(∆Gm/(NRT )

∂φ2
1

)

≡ ∂

∂φ1

(∂µ1

∂φ1

)

≡ ∂

∂φ2

(∂µ1

∂φ2

)

= 0.

Using the combined FH - thermodynamic constraint,

µ1 − µ◦
1

RT
= lnφ1 +

(

1 − 1

N
)

φ2 + χφ2
2 (19)

∂

∂φ2

(µ1 − µ◦
1

RT

)

≡ ∂µ1

∂φ2
= − 1

φ1
+

(

1 − 1

N
)

+ 2χφ2 (20)

∂2µ1

∂φ2
2

= − 1

φ2
1

+ 2χ (21)

The existence of the spinodal, given by eqn 20 set to 0, and the merging of the spinodals at the

critical temperatures, given by eqn 21, yields expressions for φc
2 and χc:

φc
2 =

1

1 + N (22)

χc ≡
B

RTc

=
1

2
+

1

2N +
1√
N

. (23)

1Often these thermodynamic constraints are reported with the model free energy inserted. Thus sometimes,

you will wee the FH model reported as

µ1 − µ◦

1

RT
= lnφ1 +

(

1 − 1

N

)

φ2 + χφ2

2

and
µ2 − µ◦

2

RT
= lnφ2 +

(

1 −N
)

+ Nχφ2

1
.

These are simply eqn 18 inserted into the thermodynamic constraints that follow.
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The FH predictions given in eqns 22 and 23 are qualitatively found in experimental phase

diagrams of polymer solutions:

• Larger polymers are more difficult to solubilise. This is reflected in eqn 23, which details

how larger N leads to larger Tc. You only have to lower the temperature a little to

precipitate out large polymer chains in solution; you have to lower the temperature further

to precipitate out smaller chains.

• When chains first de-mix from solution at Tc, the volume fraction of monomer is very

low. This is evidenced in eqn 22 where φc
2 ∼ N−1.

• For a given monomer-solvent pair where B is a constant, χc decreases with increasing

number of monomers. In the limit of N → ∞, χc = 0.5.

Figure 6 shows the experimentally found phase diagram (T−φ2) for solutions of poly-isobutylene

at three different molecular weights. The FH solution theory does not quantitatively predict

correctly the binodals, however FH does capture the qualitative features of the phase separation:

(a) larger chains have larger Tcs and are more difficult to keep in solution, and (b) φc
2 is small

and becomes smaller as the molecular weight or N increases.

Figure 6: Experimental and calculated phase diagrams,
T versus φ2, for three polyisobutylene polymer solutions
with different molecular weights. The dashed curves are
the binodals calculated from FH and the dotted curves
are the spinodals. Open circles and their connecting
lines are experimental results. Reproduced from Boyd
& Phillips.

Tc is also referred to as the “theta”

temperature or θ-temperature. At T >

Tc, the chains are homogeneously mixed

in solution, indicative of a “good” sol-

vent where monomer-solvent interac-

tions are favourable. At T < Tc,

the monomer-solvent interactions are no

longer favourable and the polymer so-

lution de-mixes into phases of compo-

sitions at which these unfavourable in-

teractions balance mixing entropy. At

Tc, the monomer-solvent interactions

are neither favourable or unfavourable

and the chain is unperturbed by inter-

actions. As explained earlier, these in-

teractions, as described by the second

virial coefficient, change sign in going

from good solvent to poor solvent, so

that Tc or the “theta” temperature can be identified with vanishing second virial coefficient.

Thus, in the limit of N → ∞, these chains behave as ideal chains, exhibiting random walk or

Gaussian statistics.

Finally, most homogeneous polymer solutions will phase separate again when the tempera-

ture is increased. This high temperature de-mixing is not described by FH theory and is the

result of enthalpic changes at high temperatures. Thus, there is an additional critical temper-

ature that is larger than the Tc discussed above. This second critical temperature is referred

13



to as the Lower Critical Solution Temperature or LCST - temperatures higher than the LCST

will result in demixing. So while the take-home-message from FH is that polymers are difficult

to solubilise in solutions, it is actually even more difficult than FH suggests: there is only a

temperature window over which a polymer will solubilise at all compositions.
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