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ABSTRACT: Electron densities at nuclei are difficult to calculate
accurately with all-Gaussian basis sets because they lack an electron−
nuclear cusp. The newly developed mixed ramp-Gaussian basis sets, such as
R-31G, possess electron−nuclear cusps due to the presence of ramp
functions in the basis. The R-31G basis set is a general-purpose mixed
ramp-Gaussian basis set modeled on the 6-31G basis set. The prediction of
electron densities at nuclei using R-31G basis sets for Li−F outperforms
Dunning, Pople, and Jensen general purpose all-Gaussian basis sets of
triple-ζ quality or lower and the cc-pVQZ basis set. It is of similar quality to
the specialized pcJ-0 basis set which was developed with partial
decontraction of core functions and extra high exponent s-Gaussians to
predict electron density at the nucleus. These results show significant
advantages in the properties of mixed ramp-Gaussian basis sets compared
to all-Gaussian basis sets.

1. INTRODUCTION

Standard ab initio quantum chemistry methods use all-Gaussian
basis sets, which have no electron−nuclear cusp and thus
struggle to accurately predict core-dependent properties.
Electron densities at nuclei, ρ0, are an important example of a
core-dependent chemical property that is directly responsible
for the Fermi contact term of the indirect spin−spin coupling
constant (SSCC) and is also important in the fine structure of
the hydrogen spectrum and for relativistic calculations (in the
Darwin term). Some studies use the synonym “contact density”
for this property.
Unlike traditional all-Gaussian basis sets, the newly

developed1 mixed ramp-Gaussian basis sets do have a cusp
due to the presence of a ramp function, which in the simplest
case has the unnormalized form (1 − r)n for r ≤ 1 and 0
otherwise. These new basis sets are thus expected to give
superior results to similar sized all-Gaussian basis sets for ρ0;
this work investigates this hypothesis. Electron density at the
nuclei is both an important property in itself and a
straightforward, easily explored example of a core-related
parameter.
The new R-31G basis set was produced by replacing the 6-

fold contracted core basis function in 6-31G with a 2-fold
contracted basis function with one ramp and one Gaussian. The
R-31G basis set was shown to produce very similar chemistry
(e.g., ionization energies, atomization energies, and so on) to
the 6-31G basis set for unrestricted Hartree−Fock calculations
of molecules in the first-row-only G2 data set. It was recently
demonstrated2 that integrals that arise using ramp basis
functions can be evaluated efficiently and that UHF/R-31+G
calculation timings are competitive with UHF/6-31+G

calculation timings for large linear molecules. For the small
systems investigated here, calculation times for UHF/R-31G
and UHF/6-31G are similar.
Atomic units are used throughout this paper.

2. BASIS SETS

2.1. All-Gaussian Basis Sets. General-purpose basis sets
are designed to give accurate description of chemical energies;
for this purpose, inflexible descriptions of the core are generally
adequate. Common general-purpose basis sets discussed in this
work include the Pople (e.g., 6-31G3 and 6-311G4), Dunning5

(cc-pVnZ), and Jensen6,7 (pc-n) basis sets.
However, accurate quantification of ρ0, and hence the Fermi

contact term in the indirect spin−spin coupling constant,
requires a more flexible and accurate description of the
core.8−13 The pcJ-n and ccJ-pVnZ basis sets were designed
by Jensen12 to reproduce indirect spin−spin coupling constants
accurately. In particular, they contain additional very high
exponent core Gaussian primitives and decontraction of the
core basis functions. Our tests show that the pcJ-n basis sets are
slower than their parent pc-n bases (by about a factor of 2−4),
but significantly quicker than the higher quality pcJ-(n+1) basis
set.
Our calculations show that pcS-n, ccS-pVnZ, or cc-pCVnZ

basis sets do not give significantly improved results for ρ0
compared to their pc-n/cc-pVnZ parent basis sets. This is
because the additional primitives are not very high exponent s
primitives.
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2.2. Mixed Ramp-Gaussian Basis Sets. The R-31G and
R-31+G basis sets are general-purpose basis sets that derive
many of their properties from their 6-31G and 6-31+G parent
basis sets, and, in particular, our present implementation of R-
31G and 6-31G have similar calculation times.2

The R-31G basis set was not optimized specifically for
electron densities at the nuclei. In fact, the “R” basis function
was found by maximizing its overlap with the original 6-fold
contracted core basis function in 6-31G. Therefore, it is only
the inherent properties of the ramps that will be responsible for
superior values of ρ0 from R-31G, not a consequence of the
method of optimization.
We also consider for the first time the R1-31G basis set

which is obtained from the R-31G basis by decontracting the 1s
core function. This gives additional core flexibility while
retaining the same number of primitives.
2.3. Slater Basis Sets. Calculations involving Slater basis

sets are difficult but can be done for very small systems. There
are results from previous investigations of atoms14 for ρ0 with
three Slater basis sets, VB1, VB2, and VB3.15

The composition of these Slater basis sets15 for Li and Be is
VB1 [5s,1p], VB2 [6s,2p,1d], and VB3 [7s,3p,2d,1f], while, for
B−Ne, the composition of these basis sets15 is VB1 [5s,3p,1d],
VB2 [6s,4p,2d,1f], and VB3 [7s,5p,3d,2f,1g]. All basis functions
are uncontracted.
The R-31G and R1-31G basis sets are therefore of size

similar to that of the VB1 basis, but do not include polarization
functions.

3. RESULTS AND DISCUSSION

3.1. Method. We investigate ρ0 for a set of molecules at the
Hartree−Fock level of theory and compare results from
different basis sets to benchmark values: the exact result is
known for H; for other atomic systems except B we use
numerical HF calculations;16,17 for B HF/VB3 results are used,
while for all molecular systems results from HF/pcJ-4 were
taken as the benchmark. We report the error Δρ0 for each
calculation compared to the benchmark value.
Calculations for all-Gaussian basis sets were performed using

Q-Chem.18 Basis sets not built into the standard Q-Chem
installation were sourced from the online basis set exchange
library.19,20

All calculations involving mixed ramp-Gaussian basis sets
were done using the recently developed program RampItUp,2 a
Fortran90 program which calculates integrals in a mixed ramp-
Gaussian basis set and performs the HF SCF calculation.
It is important to note that comparison to experiment is

currently not the fairest way to assess these new basis sets
because all of calculations are at the Hartree−Fock (HF) level.
Thus, we have chosen to compare our results to highly accurate
HF calculations, either numerical HF results, where available, or
HF/pcJ-4 otherwise.

3.2. Atoms. 3.2.1. R-31G, R-31+G, and R1-31G vs Slater
Basis Sets. Since Slater and ramp basis functions both have
nonzero electron−nuclear cusps, we not only quantify the
electron density at the nucleus, ρ0, but also quantify the ratio,
G, between ρ0 and its derivative ρ0′ given by

Table 1. Benchmarks for ρ0 for Atoms and Errors in ρ0 Using Different Basis Sets

H Li Be B C N O F

Benchmark ρ0
0.318 13.83 35.43 71.98 127.56 206.13 311.97 448.71

Large Unpolarised Basis Set Δρ0
unpol-pcJ-4 −0.000 −0.09 −0.12 −0.25 −0.36 −0.43
Slater Basis Sets Δρ0
VB1 0.000 0.00 −0.02 −0.07 −0.30 −0.63 −1.24 −1.54
VB2 0.000 0.00 −0.02 −0.01 −0.14 −0.19 −0.45 −0.69
VB3 0.000 0.00 −0.01 −0.00 −0.09 −0.14 −0.32 −0.49
Mixed Ramp-Gaussian Basis Sets Δρ0
R-31G −0.020 −0.30 −0.72 −1.39 −2.35 −3.62 −4.91 −6.04
R-31+G −0.020 −0.28 −0.77 −1.44 −2.38 −3.63 −4.89 −5.99
R1-31G −0.020 0.35 0.43 0.55 0.74 0.95 1.32 1.93
General-Purpose All-Gaussian Basis Sets Δρ0
s 6-31G −0.020 −0.90 −2.02 −4.22 −7.86 −13.04 −19.68 −27.71
6-311G −0.031 −0.79 −1.99 −3.86 −6.52 −10.48 −15.52 −21.73
pc-0 −0.077 −2.20 −5.66 −11.47 −20.34 −32.87 −49.74 −71.41
cc-pVDZ −0.050 −0.63 −1.52 −3.07 −5.42 −8.76 −13.36 −19.19
pc-1 −0.035 −1.15 −3.05 −6.26 −11.21 −18.20 −27.72 −39.86
cc-pVTZ −0.031 −0.32 −1.01 −2.82 −4.90 −7.85 −11.74 −16.75
pc-2 −0.016 −0.39 −1.23 −2.53 −4.42 −7.28 −10.87 −15.55
cc-pVQZ −0.020 −0.31 −0.7 −1.40 −2.47 −4.09 −6.07 −8.80
pc-3 −0.007 −0.01 −0.18 −0.46 −0.98 −1.76 −2.79 −4.06
Specialised All-Gaussian Basis Sets Δρ0
pcJ-0 −0.012 −1.30 −2.25 −3.62 −5.55 −7.90
ccJ-pVDZ −0.004 −0.33 −0.61 −1.01 −1.54 −2.13
pcJ-1 −0.005 −0.79 −1.38 −2.20 −3.29 −4.57
ccJ-pVTZ −0.030 −0.40 −0.54 −0.89 −1.32 −1.79
pcJ-2 −0.002 −0.36 −0.63 −1.01 −1.48 −1.97
ccJ-pVQZ −0.002 −0.17 −0.33 −0.56 −0.81 −1.07
pcJ-3 −0.000 0.03 0.03 0.01 0.06 0.19
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ρ
ρ

= −
′

G
Z

0

0 (1)

where Z is the nuclear charge. It can be shown that for the exact
wave function, G = 2, the so-called Kato-cusp condition.21 Note
that for an all-Gaussian basis set, G = 0.
Tables 1 and 2 show that R-31G performs significantly worse

(generally more than a factor of 4) than the three Slater basis
sets in predicting the cusp properties ρ0 and G, despite both
ramps and Slater functions having nonzero nuclear-electron
cusps. R-31+G performs marginally better than R-31G, but this
is a small effect and we will thus not consider the R-31+G basis
set further in this work. The inferior performance of the R-31G
and R-31+G basis sets compared to the all-Slater basis set is
somewhat disappointing, though the mixed ramp-Gaussian
basis sets will of course still vastly outperform all-Gaussian basis
sets in predicting G.

For ρ0, the errors of R1-31G are about one-third the size of
the R-31G errors and are comparable in quality to VB1 for
heavy elements, though significantly worse for light elements.
R1-31G overestimates ρ0, whereas almost all other results
underestimate this quantity. This occurs because the variational
optimization of the wave function preferences occupation of
the R basis function to lower the overall energy of the system.

3.2.2. R-31G and R1-31G vs Common All-Gaussian Basis
Sets. By basis set definition, R-31G, R1-31G, and 6-31G results
for atomic hydrogen are identical. In Table 1 we observe that
for hydrogen ρ0 results from these basis sets are surprisingly
good (almost the same as cc-pVQZ).
For non-hydrogen atoms, Table 1 shows that, in absolute

terms, R-31G only underestimates ρ0 by 2%. This is a better
prediction than cc-pVQZ and about half the quality of the pc-3
calculation. This is a very promising result; R-31G is a much
smaller basis set than the quadruple-ζ all-Gaussian basis sets,
yet produces comparable ρ0 values. This result is attributed to

Table 2. Errors in the HF Cusp Ratio, G = −ρ0′/(Zρ0)a

Li Be B C N O F

Mixed Ramp-Gaussian Basis Sets
R-31G −0.086 −0.06 −0.05 −0.04 −0.04 −0.03 −0.03
R-31+G −0.085 −0.06 −0.05 −0.04 −0.04 −0.03 −0.03
R1-31G −0.061 −0.05 −0.04 −0.03 −0.03 −0.02 −0.02
All-Slater Basis Sets
VB1 0.010 0.01 0.00 −0.00 −0.01 −0.01 −0.01
VB2 0.011 0.01 0.01 0.00 0.00 0.00 −0.00
VB3 0.011 0.01 0.01 0.00 0.00 0.00 0.00

aResults for Slater basis sets from ref 14. The Kato cusp condition gives the exact benchmark result as G = 2.

Table 3. Means and Standard Deviations (SD) of ρ0 Values for Our Test Sets and of Δρ0a

H C N O

mean SD mean SD mean SD mean SD

Benchmark ρ0
pcJ-4 0.463 0.022 126.21 0.50 205.09 0.50 310.56 0.39
Large Unpolarised Basis Set Δρ0
unpol-pcJ-4 −0.001 0.003 0.03 0.04 0.04 0.03 0.07 0.05
Mixed Ramp-Gaussian Basis Sets Δρ0
R-31G −0.045 0.011 −2.13 0.12 −3.14 0.12 −4.16 0.09
R1-31G −0.045 0.011 0.91 0.04 1.37 0.05 1.99 0.07
General-Purpose All-Gaussian Basis Sets Δρ0
6-31G −0.045 0.011 −7.61 0.11 −12.56 0.12 −18.90 0.10
6-311G −0.038 0.014 −6.30 0.04 −10.09 0.04 −14.91 0.04
pc-0 −0.124 0.110 −20.30 0.14 −32.89 0.10 −49.75 0.12
cc-pVDZ −0.096 0.006 −5.15 0.10 −8.43 0.11 −12.83 0.08
pc-1 −0.086 0.005 −10.98 0.08 −17.91 0.07 −27.21 0.07
cc-pVTZ −0.051 0.004 −4.76 0.03 −7.60 0.03 −11.41 0.02
pc-2 −0.035 0.002 −4.31 0.06 −7.10 0.02 −10.56 0.05
cc-pVQZ −0.031 0.002 −2.33 0.01 −3.82 0.01 −5.66 0.01
pc-3 −0.014 0.001 −0.94 0.03 −1.55 0.01 −2.44 0.01
Specialised All-Gaussian Basis Sets Δρ0
pcJ-0 −0.008 0.012 −2.44 0.12 −3.87 0.10 −5.85 0.14
ccJ-pVDZ −0.003 0.004 −0.47 0.01 −0.75 0.01 −1.14 0.01
pcJ-1 −0.002 0.004 −1.24 0.01 −1.96 0.01 −2.91 0.01
ccJ-pVTZ −0.003 0.001 −0.40 0.00 −0.63 0.00 −0.94 0.00
pcJ-2 −0.001 0.000 −0.50 0.00 −0.76 0.00 −1.10 0.00
ccJ-pVQZ −0.001 0.000 −0.20 0.00 −0.31 0.00 −0.44 0.00
pcJ-3 0.001 0.000 0.15 0.00 0.26 0.00 0.42 0.00

aThe test sets contains the following molecules: CH, 3CH2, CH3, CH4, C2H2, C2H4, C2H6, CN, HCN, CH3OH, CO, HCO, CO2, NH, NH2, NH3,
N2, NO, O2, OH, H2O, and H2O2. All geometries are MP2/6-31G(d).
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the nonzero cusp on the ramp in R-31G which is inherently
able to model ρ0 more accurately than all-Gaussian basis sets.
The R1-31G basis set performs even better, with errors in line
with pc-3 results.
To put this result in context, the one-electron Darwin energy

for an atom is given by EDarwin = πα2Zρ0 Eh = 0.167294 Zρ0
mEh, where α is the fine structure constant. For carbon, this
equates to 128 mEh(336 kJ/mol); 6-31G underestimates this
energy by 7.9 mEh (21 kJ/mol), R-31G by 2.4 mEh (6.2 kJ/
mol), and R1−31G by 0.74 mEh (2.0 kJ/mol).
3.2.3. R-31G and R1-31G vs Specialized Gaussian Basis

Sets. In Table 1, for elements B−F, we observe that R-31G
prediction of ρ0 are of approximately the same quality as those
for the larger specialized basis set pcJ-0 (slightly worse for B- N
and slightly better for O−F). The R-31G results are worse than
for this larger specialized basis set.
Increasing the flexibility of the basis set yields clear

dividends; with only one extra basis function and no extra
primitives, R1-31G predictions are clearly better than pcJ-0 and
pcJ-1 results, and comparable to ccJ-pVDZ, ccJ-pVTZ and pcJ-2
results. R1-31G is a much smaller basis set and calculations
already are much faster than with larger all-Gaussian basis sets.
3.3. Molecules. Electron density at the nucleus is a core

property and affected relatively little by the molecular
environment of that nucleus. Therefore, the overall quality of
predictions of ρ0 by different basis sets in molecules will be
similar to the quality of results in atoms. This is quantified by
the mean error in the electron density at the nuclei across the
test set, Δρ0.
In molecules, it is also interesting to see how well a basis set

can describe the changes in electron density at the nucleus as
the molecular environment varies. This is quantified by the
standard deviation (SD) of Δρ0. If the SD of Δρ0 is small, then
ρ0 for the molecule in the basis set can be corrected by a single
number (i.e., the error in ρ0 is systematic). However, if the SD
of Δρ0 is large, then a systematic correction factor cannot be
used; this indicates that the description of the electron density
near the nuclei is not sufficiently flexible to accurately describe
the effect of varying the molecular environment on ρ0.
3.3.1. Hydrogen Nuclei. Though it is possible in molecules

for 6-31G, R-31G, and R1-31G to give different results for ρ0
through an indirect effect of the modified basis set of nearby
heavy atoms, the full set of molecular results shows this
difference is negligible in practice. As summarized in Table 3, 6-
31G, R-31G, and R1-31G give surprisingly good results for the
absolute value of ρ0 (about equivalent to cc-pVTZ). However,
they do not represent the change in ρ0 for different molecular
species as well as cc-pVTZ; this is quantified by the SD of Δρ0
(0.011 for X-31G vs 0.004 for cc-pVTZ).
3.3.2. Non-hydrogen Nuclei. The first two rows in Table 3

illustrate the importance of polarization functions for
calculating ρ0; the large unpolarized basis set unpol-pcJ-4 is
less able to describe the variation of ρ0 between different
molecules than the fully polarized basis set (quantified by the
SD of Δρ0). Therefore, the absence of polarization functions in
R-31G will immediately reduce its ability to describe the
variation of ρ0 between different molecules (i.e., increase the
SD of Δρ0) compared to fully polarized basis sets.
In Table 3, we observe the R-31G predictions of the absolute

value of ρ0 (quantified by the mean of Δρ0) for C, N, O, and F
nuclei in molecules, like in atoms, outperforms predictions of
all general-purpose triple-ζ basis sets and cc-pVQZ, while being

worse than the pc-3 basis set by about a factor of 2. In absolute
terms, R-31G generally underestimates ρ0 by about 1−2%.
Table 3 shows that R-31G outperforms the slightly larger

pcJ-0 basis set by about 20% but is not as good as all the higher
quality specialized spin−spin coupling basis sets. It is
interesting to consider the carbon atom specifically. In atomic
carbon, the pcJ-0 result is better than the R-31G result, whereas
for molecular systems, the R-31G result is superior. This is a
secondary effect of pcJ-0s inferior description of the valence
region on the core electrons.
The errors from R-31G and pcJ-0 between different

molecules are not as systematic as those for a larger basis set,
such as cc-pVQZ, as quantified by the SD of Δρ0. Therefore,
the cc-pVQZ errors are more predictable (and thus easier to
correct and more likely to cancel when considering relative
differences) than the R-31G or pcJ-0 basis set errors. This can
be attributed to the small basis sets’ lack of flexibility.
R1-31G increases the core basis set flexibility of R-31G, and

this shows significant benefit in reducing the SD of Δρ0 by
about two-thirds (e.g., from 0.12 to 0.04 for carbon nuclei).
The SD of Δρ0 for R1-31G are close to those of the
unpolarised basis set limit benchmark; significant further
improvements probably require the introduction of polarization
functions. It is encouraging that a simple decontraction of the
core function, resulting in only one additional basis function
and no additional primitives (and thus no extra integrals),
yields a basis with most of the flexibility of the unpolarized
benchmark basis. By way of illustration, the primitive and
contracted basis function composition of R1-31G is (6s4p) →
[4s2p], whereas for the unpolarized pcJ-4 basis it is (19s12p)
→ [11s9p]. Furthermore, the SD of Δρ0 for R1-31G is roughly
in line with pc-2 and three times better than pcJ-0 (0.04 vs 0.06
vs 0.12 for carbon nuclei).
The SD of Δρ0 will equate to an error in the properties

between the atom and molecule. To provide context, we can
convert this SD to an average error in the Darwin energy per
carbon atom in molecules compared to the Darwin energy of
the carbon atom. For nitrogen, 6-31G and R-31G give errors of
0.12 mEh (0.32 kJ/mol) and R1-31G gives errors of 0.05 mEh
(0.13 kJ/mol), while cc-pVQZ errors are 0.01 mEh (0.03 kJ/
mol). It is clear, then, why we can ignore this error in the
Darwin energy in calculating atomization energies for light
elements, while it will be non-negligible for very high precision
calculations or for heavier atoms.
Based on these results, we recommend R1-31G as a cheap,

high-accuracy method of calculating the Fermi contact term in
indirect spin−spin coupling constants and for calculating
Darwin relativistic corrections. Addition of polarization
functions is expected to improve the performance of this
basis set.

4. CONCLUSIONS
For non-hydrogen nuclei, despite its small size, the R-31G basis
set produces very good results for HF electron densities at the
nucleus because the ramp has a nonzero derivative at the origin.
The small, general-purpose mixed ramp-Gaussian basis set R-
31G outperforms Dunning, Jensen, and Pople general-purpose
all-Gaussian basis sets of up to triple-ζ quality as well as cc-
pVQZ. R-31G has about equivalent performance to pcJ-0 (a
small specialized basis set). However, it is worse than pc-3 and
all specialized basis sets of double-ζ quality and higher.
Decontracting the ramp and Gaussian primitive in the core
basis function to produce the R1-31G gives even better
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performance, reducing absolute errors (Δρ0) by about two-
thirds.
R-31G has very little core flexibility and is thus significantly

worse than cc-pVQZ at reproducing the changes in ρ0 in
different molecules (evidenced by the larger standard deviation
of the ρ0 errors in molecules). The more flexible R1-31G
enhances the ability to describe variations in ρ0 substantially,
leading to lower SD of Δρ0; about equivalent to pc-2. To
significantly improve the performance of mixed ramp-Gaussian
basis sets, polarization basis functions need to be introduced to
the basis set; this is an important future area of development
and a key motivator for extending the capacities of the
RampItUp program to higher angular momentum Gaussians.
These results show an application (electron density at the

nucleus) where the superior cusp and inner-electron behavior
of the mixed ramp-Gaussian basis sets gives significant
advantage over all-Gaussian basis sets. These results provide
additional justification for the development of a fully integrated
ramp-Gaussian integral package in common quantum chemistry
programs. The development of specialized and larger mixed
ramp-Gaussian basis sets in the future will be extremely
beneficial in further exploring the ability of ramp basis functions
to model the electron density at the nuclei and other core-
dependent properties.
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