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ABSTRACT: We propose a simplified variant of the dual-basis MP2[K] scheme [J.
Chem. Phys. 2011,134, 081103] that bootstraps a small-basis MP2 result to a large-basis
one. This simplified method, which we call MP2[V], assumes the occupied orbitals are
adequately described by the smaller basis, and, therefore, only the relaxation of the
virtual orbitals is considered when shifting to the larger basis. Numerical tests on several
organic reactions and noncovalent interactions show that MP2[V] yields absolute and
relative energies that are in excellent agreement with the conventional large-basis MP2
calculations but in a small fraction of the time.

I. INTRODUCTION

In order to calculate most molecular properties accurately, it is
vital to account for the effects of electron correlation, i.e., to go
beyond the Hartree−Fock approximation.1 Second-order
Møller−Plesset (MP2) perturbation theory is one of the least
expensive wave function-based electronic structure methods
that includes such effects.2 Compared to the more economical
Kohn−Sham density functional theory (DFT) methods, MP2
has the advantage of naturally and properly accounting for
medium- and long-range correlation effects. Furthermore, the
appearance of scaled MP23,4 and double-hybrid DFT5 (which
includes a MP2-like term) has helped to highlight the
importance of MP2 theory in quantum chemistry. However,
whether one uses conventional MP2, scaled MP2, or double-
hybrid DFT, the steep computational cost associated with
calculating the MP2 correction term and the need for large
basis sets for reliable results pose significant obstacles to its
application in large molecular systems.
The bottleneck in an MP2 calculation is the transformation

of the two-electron integrals from the atomic basis to the
molecular orbital basis, and this step scales as the fifth power of
the number of basis functions. There have been numerous
attempts to reduce the cost of this transformation including
local MP2 (LMP2),6,7 cutoff-based Laplace-transformed
MP2,8−10 atomic-orbital-based LMP2,11 and scaled-opposite-
spin MP2.4 All these methods have costs that scale more slowly
as the system size is increased. Other approaches, such as those
based on density fitting,12−14 Cholesky decomposition,15 or the
pseudospectral method,16 dramatically reduce the cost prefactor
of the integral transformation but still retain the fifth-order
scaling. More recently, extraordinary speed-ups of MP2
calculations have been achieved by exploiting graphics
processing units (GPUs).17−19

Despite the impressive improvements offered by these new
methods, they are not without their limitations. Methods that
rely on spatial cutoffs only exhibit reduced scaling when applied
to relatively large structures with modest basis sets. When
applied to more compact structures, they exhibit the same high-

order scaling, particularly as the basis set size is increased.
Furthermore, cutoff-based methods neglect contributions from
distant electron pairs, leading to the underestimation of
dispersion interactions, obviating one of the key advantages
of MP2 over the much cheaper DFT methods. Because of these
limitations, there remains a need for developing MP2
alternatives that are cheaper yet still maintain the accuracy of
conventional MP2 calculations.
The use of dual basis sets has provided useful efficiency gains

in both Hartree−Fock20,21 and DFT22,23 calculations. More
recently, the dual basis strategy has been extended to the
calculation of MP2 energies,24,25 and we have proposed a
hierarchy of such dual basis MP2 schemes (denoted MP2[x],
where x = 1, 2, J, K, 3).25 These schemes all improve the energy
of a small primary basis MP2 calculation by including various
subsets of the orbital corrections obtained from a larger
secondary basis HF calculation. Preliminary results showed that
these schemes yield energies that are in excellent agreement
with the target secondary basis and, in principle, promise
significant computational savings. The MP2[K] scheme, which
neglects all the three- and four-orbital corrections and includes
only some of the two-orbital corrections, was found to offer a
particularly attractive trade-off between cost and accuracy.
In the course of our investigations we became interested in a

simplified version of the MP2[K] scheme which takes
advantage of the fact that, for correlated calculations, the
basis set demands of the occupied and virtual orbitals are very
different. Because the relaxation of occupied orbitals due to
basis set extension is small, it might be possible to neglect this
relaxation altogether without sacrificing much accuracy. In this
Paper, we present our simplified scheme, which we call
MP2[V], and provide accuracy and timing results that
demonstrate its efficacy.
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II. THEORY
We begin by briefly outlining the MP2[x] family of
approximations of which MP2[V] is a member. For more
details the reader is referred to the original paper.25

A self-consistent field calculation using a target (secondary)
basis consisting of N functions yields O occupied and V virtual
molecular orbitals (MOs). These orbitals, and their associated
orbital energies, ϵi, can be used to calculate the MP2 correlation
energy

∑ ∑=
⟨ ⟩

ϵ + ϵ − ϵ − ϵ

⟨ ⟩ = | − |

< <
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(ia|jb) denotes an electron repulsion integral (ERI) in the MO
basis, which is obtained by contracting the atomic orbital (AO)
integrals with the MO coefficients

∑ μν λσ| = |
μνλσ

μ ν λ σia jb C C C C( ) ( )
N

i a j b
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This transformation step is the most expensive part of an MP2
calculation and, for maximum efficiency, is carried out in four
quarter-transformations. The first of these quarter-trans-
formations, which is normally the most expensive, has a cost
of ON4.
The MP2[x] methods tackle this computational bottleneck

by avoiding the construction of the exact secondary ERIs in 2.
Rather, an additional HF calculation is performed using a much
smaller primary basis of n functions, to obtain O occupied and
Vp virtual orbitals. Each secondary MO-ERI can then be written
as the sum of a primary MO-ERI (ipap|jpbp) and correction
terms that account for one-, two-, three-, and four-orbital
relaxation effects. By including different subsets of the orbital
corrections and retaining secondary orbital energies in the
denominator, a hierarchy of approximations can be established
that bridge between the primary and secondary MP2 energies
(and costs). For example the MP2[K] approximation can be
written as

| = | + | + |δ δia jb i a j b i a j b i a j b( ) ( ) ( ) ( )[K] p p p p p p (3)

where the orbital corrections, iδ, are given by

= −δi i ip (4)

In most cases the occupied orbitals are well-described by the
primary basis, from which it follows that their orbital
corrections, iδ and jδ, are small. Neglecting these corrections
leads to a simplification of the MP2[K] expression, which we
define as the MP2[V] approximation for the secondary MO-
ERI

| = |ia jb i a j b( ) ( )[V] p p (5)

The V subscript indicates that only relaxation of the virtual
orbitals is included. The MP2[V] correlation energy is given by
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and the total MP2[V] energy, which we denote by

MP2[V]/primary basis/secondary basis

is the sum of this and the HF energy in the secondary basis.
Although mathematically simple, the implementation of

efficient integral transformations requires careful consideration
of the available memory and disk space. Two main types of
serial algorithms have surfaced in the literature, the Saebø and
Almlöf algorithm26 and the Head-Gordon and Pople27

algorithm, both of which can be easily applied to the

Table I. Costs (Multiplies and Adds) of the Quarter Integral Transformations in the MP2[V] Approximationsa

Head-Gordon and Pople Saebø and Almlöf

transformed integral cost of quarter transformation cost reduction transformed integral cost of quarter transformation cost reduction

1st quarter (ipR|νS) On2N2 (N/n)2 (ipR|νS) On2N2 (N/n)2

2nd quarter (ipa|νS) OnVN2 (N/n) (ipR|jpS) O2nN2 (N/n)
3rd quarter (ipa|jpS) O2nVN (N/n) (ipa|jpS) O2VN2 1
4th quarter (ipa|jpb) O2V2N 1 (ipa|jpb) O2V2N 1

an = size of primary basis set; N = size of secondary basis set; O = number of occupied orbitals; orbital indices with a p subscript refer to MOs in the
primary basis; unsubscripted orbital indices represent secondary MOs; μ and ν represent primary AO basis functions; R and S represent secondary
AO basis functions.

Chart 1
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transformation required to produce the MP2[V] integrals.
Table I summarizes the costs and relative savings of both of
these algorithms when used to calculate the MP2[V] integrals
compared to the cost of calculating the regular MO-ERIs.
In the Saebø and Almlöf algorithms, the integral trans-

formation is accomplished via two half-transformations
involving first the two occupied orbitals and then the two
virtual orbitals. As a consequence, the computational cost for
the four transformation steps scale as On2N2, O2nN2, O2VN2,
and O2V2N. When used to calculate the MP2[V] integrals, the
first two transformations are cheaper than regular MP2 by
factors of (N/n)2 and (N/n), with the overall savings being
dominated by the (N/n)2 factor. However, this algorithm
requires all AO-ERI of the type (Rμ|Sν), for fixed secondary
basis functions R and S and for all primary basis functions, μ
and ν, prior to the transformation. These must be generated in
the order RSμν (slow to fast), and this sequence is not
compatible with the AO-ERI package within Q-CHEM.
The alternative is the cubic-memory algorithm of Head-

Gordon and Pople, and this is the one we have adopted. It
performs the transformation in the order of occupied - virtual -

occupied - virtual and accumulates the results of the half-
transformed integrals, (ipa|Sν), on disk. It uses only cubic
memory and disk storage, and, where there is insufficient
memory, the algorithm performs the transformation in multiple
batches, each requiring the recalculation of the entire set of AO
integrals. The MP2[V] modification of this algorithm reduces
the first three-quarter-transformations by factors of (N/n)2,
(N/n), and (N/n) when compared to the calculation of the
secondary MO-ERIs. We note that the second quarter
transformation step dominates the cost and therefore expect
the cost reduction to be around (N/n). However, because of
the reduced memory requirements, calculating the (ipa|jpb)
integrals can require fewer batches which introduces additional
savings as the AO-ERI do not have to be recomputed as often.
Pseudocode showing the modified algorithm for calculating the
(ipa|jpb) integrals is shown in Algorithm 1 in Chart 1.

III. RESULTS

A. Computational Details. To demonstrate the accuracy
and efficiency of the MP2[V] method, we have calculated all-
electron MP2[V] energies and examined the errors in both

Figure 1. Isomerization reactions included in the test set.
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absolute and reaction energies with respect to MP2 benchmark
calculations using the full secondary basis. Specifically we
considered the set of 34 isomerization reactions featured in our
previous studies and also the S22 set of noncovalent interaction
systems. For all these systems, the energy differences are
sensitive to basis set quality and therefore provide a stringent
test of our method. The geometries for the structures were
taken from the literature,28,29 and all self-consistent field (SCF)
calculations, either in the primary or secondary basis set, were
converged to a DIIS (direct inversion in the iterative subspace)
error of 10−7. All calculations were performed within a
development version of the Q-CHEM program.30

B. Performance Analysis. In our previous work, we found
that cc-pVDZ is a cost-effective primary basis when the target
secondary basis is cc-pVQZ. We therefore computed MP2[V]/
cc-pVDZ/cc-pVQZ energies for the set of isomerization
reactions shown in Figure 1. Table II summarizes the
MP2[V] deviations from the benchmark MP2/cc-pVQZ
reaction energies, along with the mean absolute error (MAE),

maximum error (MAX), and the percentage of the benchmark
reaction energy captured by the MP2[V] approximation.
While the secondary orbitals are usually obtained by

conventional SCF calculations, it is beneficial to invoke
economical SCF approximations for systems where the
underlying large-basis HF calculation represents a significant
overhead. One such method is the Hartree−Fock Perturbative
Correction (HFPC)21 which obtains approximate secondary
orbitals from a single diagonalization of a small basis Fock
operator in the larger secondary basis set.
The results in columns 2−5 are for MP2[V] coupled with

conventional HF/cc-pVQZ SCF calculations, while the results
in columns 6−9 show the performance of MP2[V] combined
with the unconverged orbitals obtained using HFPC. In both
cases, the summary statistics for the reactants and products
have been combined.
When coupled with conventional HF calculations, the

average error in the MP2[V] total energies is only 2.0 kJ/
mol, and only 5 out of the 68 errors exceed 4 kJ/mol. Unlike

Table II. Mean Absolute Errors (MAE, kJ/mol), Maximum Absolute Errors (MAX, kJ/mol), and the Percentage Recovery of the
MP2/cc-pVQZ Reaction Energy for MP2[V] Coupled with HF/cc-pVQZ (Columns 2−5) and HFPC/cc-pVDZ/cc-pVQZ
(Columns 6−9)

MP2[V]/cc-pVDZ/cc-pVQZ HFPC+MP2[V]/cc-pVDZ/cc-pVQZ

reaction reactant product reaction % reactant product reaction %

1 −0.3 0.1 0.5 97.7 3.2 2.5 −0.8 103.8
2 −0.3 −0.7 −0.3 100.3 3.2 3.1 −0.2 100.2
3 −1.4 −3.5 −2.1 110.3 3.7 5.9 2.2 89.3
4 −3.1 −2.7 0.4 90.7 5.8 5.3 −0.5 110.0
5 −2.3 −3.1 −0.8 112.7 5.3 5.8 0.5 92.4
6 −3.1 −2.2 0.9 92.3 5.8 5.2 −0.6 105.4
7 0.1 −1.0 −1.1 102.8 2.7 3.4 0.6 98.4
8 −2.2 −2.7 −0.6 100.6 5.2 6.2 1.1 98.9
9 −1.7 −0.6 1.2 96.2 4.9 4.1 −0.8 102.7
10 −6.2 −6.1 0.1 99.4 10.1 9.6 −0.5 102.5
11 −9.8 −9.4 0.4 97.8 15.5 14.4 −1.0 105.7
12 −2.2 −0.5 1.7 99.2 5.7 4.3 −1.4 100.7
13 −1.3 0.3 1.6 99.1 5.4 3.8 −1.6 100.9
14 0.4 1.5 1.0 99.1 2.7 2.9 0.2 99.8
15 −1.9 −2.1 −0.2 100.6 6.4 6.1 −0.3 100.8
16 0.4 −1.2 −1.5 104.5 3.0 4.7 1.7 95.0
17 −1.2 −2.0 −0.8 100.6 8.3 7.7 −0.6 100.5
18 −2.4 −2.1 0.3 99.3 7.5 7.4 −0.1 100.2
19 2.8 1.6 −1.2 107.6 1.6 3.8 2.2 85.3
20 1.6 2.2 0.6 99.3 3.8 2.8 −1.0 101.3
21 −0.4 −0.3 0.1 98.0 5.1 4.9 −0.2 104.7
22 −0.3 −0.4 −0.1 100.6 5.6 5.1 −0.5 102.8
23 −3.9 −4.3 −0.4 101.5 10.3 10.2 −0.1 100.4
24 −0.6 −0.6 −0.0 100.0 4.7 4.2 −0.5 100.9
25 1.5 0.9 −0.5 100.5 1.1 1.6 0.5 99.5
26 3.1 3.2 0.2 99.8 0.3 0.2 −0.2 100.2
27 1.6 0.7 −0.8 100.3 4.8 4.6 −0.2 100.1
28 0.9 0.6 −0.4 100.3 2.0 3.3 1.3 99.0
29 −1.0 −0.8 0.3 99.6 5.6 5.3 −0.3 100.6
30 1.4 0.6 −0.7 101.8 2.9 3.1 0.2 99.5
31 3.3 1.8 −1.5 102.1 0.8 2.1 1.3 98.2
32 2.5 2.9 0.5 98.6 2.2 1.9 −0.4 101.1
33 −2.3 −2.9 −0.7 101.9 7.8 8.4 0.6 98.4
34 −1.9 −0.5 1.4 95.5 7.4 6.1 −1.3 104.2

MAE 2.0 0.7 5.0 0.7
MAX 9.8 2.1 15.5 2.2
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the HFPC method, none of the MP2[x] variants, including
MP2[V], is variational with respect to the true MP2 energy,
and therefore the errors in the total energies of the reactants
and products can be of either sign. Interestingly, however, when
MP2[V] is coupled with HFPC the energies of individual
reactants and products are consistently overestimated leading
to errors in the total energies that are all positive.
The errors for the reaction energies are, on average,

significantly lower than those of the total energies. This reflects
the fact that a large portion of the error in the total energies
arises from core electrons, and this error cancels when
considering energy differences. In particular, it is worth noting
that the reactants and products with the largest errors

(reactions 10, 11, and 23) yield some of the smallest reaction
energy errors. Also, despite the use of orbitals from HFPC
calculations giving much higher errors for the reactants and
products, they give very similar errors for the reaction energies.
This suggests additional savings may be achieved by combining
the two perturbative approaches when calculating reaction
energies, although such benefits become less efficacious as the
system size increases.
Since MP2 is frequently used to describe noncovalent

interactions, it is desirable for any approximate MP2 method to
maintain its accuracy for such systems. To test if this is the case
for the MP2[V] method, we applied it to the S22 set of weakly
bound systems and have summarized the results in Table III.
The results have not been corrected for basis set superposition
error, although such calculations are ideal candidates for dual-
basis methods.31 Because diffuse functions are important for
accurately describing noncovalently bonded systems, we
adopted aug-cc-pVTZ as the target secondary basis.
Columns 2−6 of Table III show the results obtained when

using 6-31G(d) as the primary basis set. On average, MP2[V]
does a good job by recovering 93% of the MP2/aug-cc-pVTZ
interaction energies. However, in the worst case, ethene dimer,
it recovers only 84%. Adding a single set of diffuse functions to
the primary basis (columns 7−11) significantly improves the
results with even the worst case recovering almost 95% of the
interaction energy which amounts to an error of only 1.3 kJ/
mol. These results suggest that it is important that the primary
basis contain some diffuse functions when performing
calculations on weakly bound systems.

C. Efficiency Study. Table I indicates the theoretical speed-
ups that are possible when using MP2[V]. However, there are
many factors that can affect the efficiency of the implementa-

Table III. Errors (kJ/mol) in Absolute and Interaction Energies Using MP2[V] with Respect to MP2/aug-cc-pVTZ Benchmark
Energies

MP2[V]/6-31G(d)/aug-cc-pVTZ MP2[V]/6-31+G(d)/aug-cc-pVTZ

complex dimer monomer monomer int % dimer monomer monomer int %

ammonia dimer (C2h) −3.3 −1.7 −1.7 −0.1 99.3 3.2 2.0 2.0 0.7 94.9
water dimer (Cs) −3.4 −1.8 −1.7 −0.1 99.5 5.0 2.8 2.9 0.7 97.2
formic acid dimer (C2h) −4.0 −3.8 −3.8 −3.6 95.8 8.5 4.0 4.0 −0.5 99.5
formamide dimer (C2h) −9.2 −6.4 −6.4 −3.5 95.3 5.8 2.8 2.8 −0.3 99.6
uracil dimer (C2h) −15.4 −9.8 −9.8 −4.1 96.0 14.3 6.6 6.6 −1.2 98.8
2-pyridoxine 2-aminopyridine (C1) −18.3 −11.5 −10.2 −3.5 96.0 8.0 4.1 4.2 0.3 99.7
adenine thymine WC (C1) −15.9 −11.9 −9.4 −5.4 93.8 13.6 7.0 6.3 0.3 99.6
methane dimer (D3d) −2.4 −1.3 −1.3 −0.1 97.2 −1.3 −0.6 −0.6 0.1 97.1
ethene dimer (D2d) −10.8 −6.2 −6.2 −1.6 84.4 −0.5 −0.2 −0.2 0.1 99.2
benzene methane (C3) −10.1 −10.0 −1.2 −1.1 92.7 2.1 3.0 −0.6 0.3 97.6
benzene dimer (C2h) −15.2 −10.0 −10.0 −4.8 85.6 5.2 3.0 3.0 0.9 97.4
pyrazine dimer (Cs) −10.0 −7.1 −7.1 −4.2 89.9 6.8 3.6 3.6 0.5 98.8
uracil dimer stack (C2) −14.2 −9.5 −9.5 −4.9 92.7 12.6 6.6 6.6 0.6 99.1
indole benzene stack (C1) −18.8 −14.2 −9.9 −5.3 89.9 6.1 4.3 3.0 1.3 97.6
adenine thymine stack (C1) −14.6 −11.2 −9.1 −5.8 93.7 11.0 6.9 6.4 2.3 97.5
ethene ethyne (C2v) −10.6 −6.2 −6.0 −1.6 86.5 1.6 −0.2 1.9 0.2 98.6
benzene water (Cs) −9.2 −10.0 −1.7 −2.4 88.7 5.7 3.0 2.9 0.2 99.1
benzene ammonia (Cs) −9.9 −10.0 −1.5 −1.7 90.7 4.7 3.0 2.0 0.3 98.2
benzene HCN (Cs) −11.6 −10.0 −3.3 −1.7 95.1 4.1 3.0 1.8 0.7 97.8
benzene dimer (C2v) −17.6 −10.0 −10.1 −2.5 91.4 5.7 3.0 3.0 0.4 98.7
indole benzene T-shape (C1) −20.2 −14.2 −10.0 −4.1 91.3 6.9 4.3 3.0 0.4 99.2
phenol dimer (C1) −15.8 −8.9 −8.9 −2.0 95.5 9.4 4.9 4.9 0.4 99.1

MAE 2.9 0.6
MAX 5.8 2.3

Figure 2. Speed-ups of MP2[V] relative to conventional MP2 for the
molecules in the isomerization set. Crosses indicate cases where the
conventional MP2 algorithm required two batches and therefore two
evaluations of the AO-ERIs.
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tion of such a method, and the real advantage of MP2[V] can
only be appreciated by considering actual timing data. Figure 2
summarizes the timing results for all the calculations performed
for the isomerization reactions in Section III.B. The calculations
were carried out using a 2.93 GHz Intel Nehalem processor, 3
GB of DDR3 RAM, and 20 GB of scratch disk space.
The plot shows the speed-ups relative to the cost of the

conventional MP2 calculation as a function of the number of
secondary basis functions. Calculations where the conventional
MP2 calculation had insufficient disk, and therefore had to
recalculate the AO-ERIs, are indicated with crosses. The speed-
up is roughly a factor of 5, trending upward (as seen from the
line of best fit) for larger systems due to the conventional
algorithm having to recalculate the integrals. The cc-pVDZ/cc-
pVQZ basis set pairing typically has a N/n ratio of 4.5 which is
in excellent agreement with our theoretical estimate.
For much larger systems, our modified algorithm will also

need to recompute the AO-ERIs. However, the disk storage
requirements for MP2[V] are lower by a factor of N/2n, and
therefore it will never require more batches than the
conventional algorithm.

IV. CONCLUDING REMARKS

We have proposed a simplification to our previously published
dual-basis MP2[K] scheme for bootstrapping a small basis MP2
calculation to a larger basis. This new method, which is termed
MP2[V], accounts for the relaxation effects of virtual orbitals
upon basis set enlargement, while neglecting such effects for
occupied-orbitals.
We have tested the accuracy and efficiency of the MP2[V]

scheme on sets of organic reactions and noncovalent
interactions, and our results show that, with an adequate
choice of primary basis, MP2[V] yields excellent agreement
with large secondary basis MP2 benchmarks at approximately
20% of the cost. The accuracy of the results obtained using
MP2[V] justifies the underlying assumption of the method -
that the relaxation of the occupied orbitals can be neglected
when expanding the basis set.
Density Fitting is another popular technique for improving

the efficiency of MP2 calculation, and one may wonder if it can
be used in combination with MP2[V] for even greater speed-
ups. Our initial investigations suggest that the potential speed-
ups are insubstantial.
While our assessment of both accuracy and efficiency focused

on conventional MP2 calculations, we expect the computational
savings to carry over to other methods which utilize second-
order perturbative energies, such as the popular “double-
hybrid” DFT functionals.
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