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ABSTRACT: We discuss molecular orbital basis sets that
contain both Gaussian and polynomial (ramp) functions. We
show that, by modeling ramp−Gaussian products as sums of
ramps, all of the required one- and two-electron integrals can be
computed quickly and accurately. To illustrate our approach, we
construct R-31+G, a mixed ramp−Gaussian basis in which the
core basis functions of the 6-31+G basis are replaced by ramps.
By performing self-consistent Hartree−Fock calculations, we
show that the thermochemical predictions of R-31+G and 6-31+G are similar but the former has the potential to be significantly
faster.

1. INTRODUCTION

Digital computers are excellent at representing numbers but are
incapable of directly representing functions. For this reason,
computational scientists who need to construct a function
usually represent it as a linear combination of known functions
from a basis set, thereby converting the problem of generating
the function into the problem of generating numbers (viz. the
linear coefficients).
In electronic structure calculationswhether based on the

wave function,1 the electron density (DFT),2 or the intra-
cule3the orbitals play a central role and are invariably
expanded in a basis. Over the years, a variety of basis functions
have been explored, including Slater functions,4,5 wavelets,6,7 δ
functions,8 Gaussians,9 and plane-waves, each bringing a
different combination of advantages and disadvantages. Slater
functions can describe electron−nuclear cusps10 but require the
evaluation of troublesome three- and four-center electron
repulsion integrals (ERIs); δ functions obviate the need for
ERIs but necessitate very large basis sets; Gaussians and plane-
waves are incapable of describing cusps but have become
popular choices for calculations on molecular and periodic
systems, respectively, primarily because they lead to tractable
ERIs.
Since Boys’ introduction9 of Gaussians in 1950, there has

been a vast amount of research on the development and
efficient implementation of compact but accurate Gaussian
bases for molecular calculations and the work of Huzinaga,11

Pople et al.,12,13 Ruedenberg et al.,14,15 Almlöf and Taylor,16−18

Dunning et al.,19−21 and Jensen22−24 has been particularly
influential.
Although no Gaussian basis can ever properly represent the

orbital cusp at a nucleus itself, it can give an adequate account
of the orbital in the core regions (i.e., the neighborhoods of
nuclei) if it includes Gaussians with sufficiently large exponents
and, for this reason, all of the standard bases contain Gaussians
of this type. However, the fact that exponents in the range 103−
106 are needed confirms that, quite literally, Gaussians are

round pegs trying to fit a square hole. Mathematical analyses by
Kutzelnigg and others25−29 have shown that the cusp problem
is the key factor determining the rate at which Gaussian basis
sets converge toward the complete-basis-set limit and the
frustrating realization that significant computational effort is
expended to treat chemically inert core regions has led many
researchers to seek more cost-effective solutions to the cusp
problem.
One possibility is to regularize all of the Coulomb

operators30−37 in the Schrödinger equation so that they no
longer produce cusps. However, although a strongly rank-
reduced Schrödinger equation33 can be treated accurately even
by modest Gaussian basis sets, overenthusiastic regularization
can produce unacceptably large changes in the resulting
theoretical model chemistry.
A more robust approach is to construct mixed basis sets that

contain a few functions that are deliberately designed to treat
the cusps. To this end, Allen,38 Silver,39 Bacskay and
Linnett,40−43 Lo et al.,44 Bugaets and Zhogolev,45 and Colle
et al.46 have considered mixed Slater−Gaussian basis sets, and
Pahl and Handy have discussed a planewave-polynomial basis.47

However, in each case, difficult mixed ERIs arise which require
expensive numerical expansions or quadratures.
In contrast, mixed ramp−Gaussian bases, which have been

discussed previously by Bishop,48,49 Gimarc,50 and Steiner,51−58

are more promising. In this manuscript, we argue that such
bases not only solve the cusp problem but, if the awkward
ramp−Gaussian products are modeled suitably, also lead to
straightforward ERIs, many of which can be computed
efficiently using multipoles. We discuss basis functions in
section 2, mixed basis sets in section 3, basis function products
in section 4, one- and two-electron integrals in section 5, a
selection of numerical results for small atoms and molecules in
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section 6, and some pertinent conclusions in section 7. Except
where noted otherwise, atomic units are used throughout.

2. BASIS FUNCTIONS
Each of the basis functions that we will consider is the product
of a radial factor and a normalized spherical harmonic Y m(θ,φ),
where r, θ, and φ are the usual spherical polar coordinates
around the center of the function. The angular momentum of a
basis function is defined by its quantum numbers and m and
those with = 0,1,2,... will sometimes be called s-, p-, d-, ...
functions.
2.1. Gaussians. A Gaussian of exponent α is

α
π

α θ φ= + !
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with the normalization
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An s-Gaussian centered at A will be denoted by sα
A and a

generic Gaussian by . A fixed linear combination of Gaussians
with the same and m values is termed a contracted Gaussian
function.
2.2. Ramps. A ramp with degree n and radius r0 is given by
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if r ≤ r0 but it vanishes elsewhere. It has the normalization

⟨ | ⟩ = 1n m n m (4)

An s-ramp centered at A will be denoted by sn
A and a generic

ramp by .
Sn ramps have a cusp (i.e., a discontinuous first derivative) at

r = 0 (see Figure 1), which allows them to capture the behavior

of molecular orbitals close to nuclei.10 A ramp of degree n also
has a discontinuous nth derivative at r = r0, but this is of no
practical importance if n is large. Noninteger ramp degrees are
possible, but we will not consider them here.
2.3. Density Ramps. A density ramp with degree n and

radius r0 is given by
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if r ≤ r0 but it vanishes elsewhere. It is the same as the orbital
ramp (3) except that it has the “unit multipole” normalization

= r Y 1n m m (6)

An s-type density ramp centered at A will be denoted by n
A and

a generic density ramp by .
The Coulomb and anti-Coulomb59 potentials within a ramp

are polynomials and, for example,
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These will be useful in later sections of this paper.
2.4. Zero Diatomic Differential Overlap. After its

introduction in the 1960s, the Neglect of Diatomic Differential
Overlap (NDDO) approximation quickly established itself as a
powerful method for avoiding difficult two-electron integrals
and for increasing the speed of molecular orbital calculations.60

Fortunately, we can easily ensure that all pairs of ramps in a
molecule are strictly nonoverlapping by choosing their radii r0
to be less than half of the distance between the closest ramp
centers in the molecule. This strategy immediately leads to
significant gains in computational efficiency. Noting that the
shortest known equilibrium bond length between heavy
atoms61 occurs in O2

++, where r(O−O) ≈ 2.05 bohr, we
decided to assume that heavy nuclei are always at least 2 bohr
apart and then to follow Steiner55 by choosing r0 = 1 for all of
our ramp functions. This constraint could be relaxed in future
work.

2.5. Hydrogen-like Ions. The ground-state energy of a
hydrogen-like ion (i.e., H, He+, Li2+, ...) with nuclear charge Z
and orbital angular momentum is

= −
+
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and the energy afforded by a ramp n m(r) with r0 = 1 and
degree n is
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It can be shown that, for large Z, the optimal degree and
resulting energy are
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Thus, even when its radius is fixed at r0 = 1, a single ramp
with degree n ≈ Z/( + 1) provides a good approximation to
the hydrogenic orbitals for large Z.

Figure 1. Sn ramps (n = 1,2,...,6), vertically rescaled for clarity.
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3. MIXED RAMP−GAUSSIAN BASIS SETS
Mixed ramp−Gaussian basis sets can be designed from first-
principles, but in this preliminary study, we decided to
introduce ramps to an existing basis, while seeking to retain
its model chemistry. Because of its cusp and its simplicity, an s-
ramp is superior to a highly contracted Gaussian for modeling
the immediate neighborhood of a nucleus, but it is less potent
at intermediate distances and is entirely useless for r > 1. For
this reason, it may be useful to augment the ramp with one or
more Gaussians that extend beyond its support. In our
modified basis, we retain the valence functions but replace
each core function ϕ by the 2-fold contracted function

ϕ ̂ = + αc S c sn1 2 (13)

where the parameters c1, n, c2, and α are determined by fitting.
Typically, ϕ is highly contracted, so its replacement by ϕ̂ results
in fewer primitives and potentially significant computational
savings. We introduce an s-ramp for a first-row atom and, in a
similar way, we could introduce an s-ramp and three p-ramps
for a second-row atom, and so on.
To illustrate our approach, we will describe the rampification

of the famous 6-31+G basis of Hehre, Ditchfield, and Pople13

to form the mixed basis R-31+G for the first-row atoms (i.e., Li
to Ne). The core function ϕ in 6-31+G is a 6-fold-contracted s-
function. The c1, n, c2 and α parameters (Table 1) were found
by considering the charge-conserving least-squares Lagrangian

ϕ ϕ ϕ ϕ λ ϕ ϕ= ⟨ − ̂ | − ̂ ⟩ + ⟨ |̂ ⟩̂ −[ 1]2 2 2 2
(14)

In all cases, the optimal ramp degree n is Z + 1 and the
exponent α lies between the two smallest of the six exponents
in ϕ, indicating that the ramp and Gaussian model the inner
and outer parts of ϕ, respectively. In the absence of other
effects, the quartic nature of eq 14 causes to decrease as ϕ
becomes more diffuse. However, the ramp radius r0 = 1 is
uncomfortably tight for the Group 1 and 2 atoms and their
residuals are therefore higher than might otherwise have been
expected.
Table 2 shows how the moments ⟨r⟩ and ⟨r−1⟩ differ

between the “6” and “R” basis functions in the two-electron
atomic ions. The “6” function is always more diffuse than the
“R” function and, particularly in the light atoms, it extends
significantly beyond r = 1 and makes heavy demands on the
single Gaussian in eq 13, which must try to capture this
behavior by itself.
Rampification produces small changes in calculated proper-

ties, and we define the “rampdev”

Δ = − + − − +P P(R 31 G) (6 31 G) (15)

of a property P as the difference between its values computed
with the rampified and original basis sets. If the rampdevs are
consistently small (e.g., below 1 mEh), we can infer that the
rampified and original basis sets afford similar theoretical model
chemistries.

4. BASIS-FUNCTION PRODUCTS
Mixed ramp−Gaussian bases yield three types of basis-function
products: Gaussian−Gaussian (GG), ramp−ramp (RR), and
ramp−Gaussian (RG). Proceeding with these would lead to six
families of two-electron integral(GG|GG), (GG|RR), (GG|
RG), (RR|RR), (RR|RG), and (RG|RG)some of which are
computationally troublesome. Therefore, to make the problem
tractable, we express all RG and RR products as sums of density
ramps. This removes all three- and four-center integrals and is a
key advantage of ramp−Gaussian bases over Slater−Gaussian
bases.

4.1. GG Products. Gaussian−Gaussian products yield
Gaussians of higher exponent,1 for example,

αβ
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where P = (αA + βB)/(α + β).
4.2. RR Products. Ramp−ramp products vanish if they are

on different centers. Otherwise, their product is a combination
of density ramps of higher degree, for example,
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4.3. RG Products. The ramp−Gaussian product A B

vanishes except on the domain of the ramp. It is possible,
therefore, to use least-squares fitting to model such products by
sums of density ramps at A, that is,
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We fit the potentials, rather than the RG products themselves,
using the least-squares functional59
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and the charge-conservation constraint

∑=
=

cA B

k

K

k k
A

1 (20)

Table 1. Parameters for the Ramp Basis Function Equation
13 in the R-31+G Basis for First-Row Atoms

Ramp params. Gaussian params. Residual

Atom c1 n c2 α

Li 0.2958990 4 0.8049342 1.404 0.00023
Be 0.3838603 5 0.7153614 2.279 0.00013
B 0.4548135 6 0.6387753 3.327 0.00011
C 0.5120939 7 0.5749880 4.545 0.00011
N 0.5587448 8 0.5219102 5.939 0.00013
O 0.5974355 9 0.4773544 7.505 0.00016
F 0.6298802 10 0.4395960 9.252 0.00020
Ne 0.6573841 11 0.4074466 11.168 0.00024

Table 2. ⟨ϕ|r|ϕ⟩ and ⟨ϕ|r−1|ϕ⟩ in the He-like Ions

Ion ⟨r⟩6 ⟨r⟩R−⟨r⟩6 ⟨r−1⟩6 ⟨r−1⟩R−⟨r−1⟩6
Li+ 0.5702 −0.0199 2.6903 0.0178
Be2+ 0.4123 −0.0077 3.6923 0.0109
B3+ 0.3230 −0.0039 4.6936 0.0084
C4+ 0.2657 −0.0024 5.6921 0.0076
N5+ 0.2258 −0.0017 6.6892 0.0075
O6+ 0.1963 −0.0013 7.6852 0.0077
F7+ 0.1737 −0.0011 8.6810 0.0080
Ne8+ 0.1558 −0.0009 9.6748 0.0084
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The ck can be found by solving of a set of K + 1 linear
equations involving the integrals

=  A rjk j
A
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12 (21)

= b rk k
A A B

12 (22)

Using the anti-Coulomb potential of a ramp, it is easy to find
the Ajk integrals, for example,
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and the bk integrals can be reduced to overlap integrals such as
those discussed in section 5.
4.4. Example: Modeling Concentric Ss Products.

Concentric Snsα products tend to be larger than nonconcentric
ones, and it is wise to model them accurately. In calculations
with the R-31+G basis, the Sn ramp on each heavy atom is
paired with its associated sα primitive (see eq 13), the three s
primitives in the inner valence function, the single primitive in
the outer valence function, and the single primitive in the
diffuse function.
To illustrate our RG modeling scheme, we consider the

product of the S4 ramp and the diffuse sα Gaussian (α = 0.0074)
in the R-31+G basis for the Li atom. If we choose to expand
this product as a linear combination of the three density ramps
4, 5 and 6, we obtain the matrix equation
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As Figure 2 shows, the resulting three-ramp model is within 6 ×
10−9 of the S4sα product at all points.

The density ramps nk that we have chosen to model all of

the Snsα products that arise in the R-31+G basis of the first-row
atoms are listed in Tables 10 and 11 of the Supporting
Information.

5. INTEGRAL EVALUATION
In this section, we outline methods to compute the one- and
two-electron integrals that arise in a ramp−Gaussian basis set.
We do not discuss the all-Gaussian integrals, for these have
been thoroughly studied previously62−64 and we have checked
our implementation against integrals from Q-Chem.65 We
consider the one- and two-electron integrals that arise for s-
ramps and s-Gaussians, using the notation RXY = |X−Y|.

5.1. Ramp−Ramp Integrals ⟨ | ̂ | ⟩O1 and ⟨ | | ⟩− r12
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and, from eq 7, the Coulomb integral is
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If the ramps do not overlap, all one-electron integrals vanish
and the Coulomb integral is simply

π⟨ | | ⟩ =− r
R
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5.2. Ramp−Gaussian Integrals ⟨ | ̂ | ⟩O1 and ⟨ | | ⟩− r12
1 .

All of the required integrals can be expressed in terms of the
auxiliary integrals

∫β π
= − −β β− − − +w

R
r r

/
(1 ) [e e ]dn

AB

n r R r R

0

1
( ) ( )AB AB

2 2

(30)

and the practical computation of these quantities is discussed in
the Appendix.
If the ramp and Gaussian overlap significantly, the one-

electron integrals are
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Figure 2. Error in a three-ramp model for a S4sα product in the Li
atom.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500615m | J. Chem. Theory Comput. 2014, 10, 4369−43764372



and M m
Ss contains the multipole moments of the Sn

Asβ
B product

and TC
m contains the interactions of those multipoles with a

unit charge at C. (This is discussed further in the following
subsection.) The Coulomb integral is
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If the ramp and Gaussian overlap negligibly, all of the one-
electron integrals are negligible and the Coulomb integral
reduces to
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− r s

R
4 (2 / )

n
A B

AB
12

1
3/4

(36)

5.3. Computational Considerations. Our approach to
mixed ramp−Gaussian basis sets has two significant computa-
tional advantages for the evaluation of two-electron integrals
Gcd

ab ≡ (ab|cd). The first pertains to cases where the ab and cd
densities overlap, the second to the nonoverlapping case.
Replacing highly contracted Gaussians by ramps lowers the

mean degree of contraction K of the basis set, and because the
ramp−ramp integrals (section 5.1) and ramp−Gaussian
integrals (section 5.2) can be computed roughly as quickly as
traditional Gaussian−Gaussian integrals, this reduction leads to
dramatic savings in the innermost loops of integral algorithms,
whose costs scale with K4. This has a direct beneficial effect on
the computational effort required in the overlapping case.66

In large systems, most two-electron integrals are of the
nonoverlapping type and are therefore most efficiently
computed via multipole−multipole interactions. For example,
as described above, all A A and A products are expressed
in terms of ramps on A, and likewise, all C C and C

products are expressed in terms of ramps on C. The integrals
associated with these two nonoverlapping sets can therefore be
computed via the classical expression67

= λμ
λμG M T Ncd

ab
m
ab m

cd (37)

where Mab
m is the ( m)-multipole moment of the ab product

around A, Ncd
λμ is the (λμ)-multipole moment of the cd product

around C, and λμT m is the interaction between a unit ( m)-
multipole at A and a unit (λμ)-multipole at C. This approach is
efficient because the multipole moment matrices Mab

m and Ncd
λμ

are calculated at the shell-pair level and the interaction matrices

λμT m are calculated at the nucleus-pair level. The only shell-

quartet operation is the second matrix−matrix multiplication in
eq 37 but this can be performed extremely efficiently using a
Level-3 BLAS routine. This is the key computational advantage of
ramps over contracted Gaussian functions.

6. RESULTS

The one-and two-electron integrals arising in a mixed basis of s-
ramps and s- and p-Gaussians have been implemented in a
stand-alone Fortran 90 program, and we have used this to
perform unrestricted Hartree−Fock (UHF) calculations on
molecules containing the atoms H to Ne.
Our goal was to determine the extent to which the inclusion

of ramps perturbs the theoretical model chemistry of the
original basis set. To this end, we compared the results of HF
calculations for helium-like ions, atoms, and small molecules
using the 6-31+G and R-31+G bases.

6.1. Helium-like Ions. Table 3 shows the HF energies of
the He-like ions. Because these systems have only one occupied
orbital and no valence electrons, they reveal the effects of
rampification directly. In all cases, the HF/R-31+G energies are
higher than the HF/6-31+G energies and the differences, which
range from 60 mEh for Li to around 20 mEh for the heavier
ions, are large: the key question is whether or not they will
largely cancel in calculations of chemical energetics.
Why are the HF/R-31+G energies higher than the HF/6-

31+G energies? To answer this, we have examined the ionic
radii ⟨r⟩ and the molecular orbital (MO) coefficients, which are
also shown in Table 3. In general, the R-31+G ions are larger
than the 6-31+G ions, with significantly larger amounts of the
valence and diffuse basis functions contributing to the orbital.
The inclusion of these functions helps to describe the outer
core region and to correct for the deficiencies of the “R”
function in this part of space. The slight dilation of the ion that
results from rampification of the basis has predictable effects on
the components of the total energies, leading to reductions in
the magnitude of the nuclear-attraction, kinetic and two-
electron energy components, and an overall destabilization of
the ion. These components in the O6+ ion are shown in the
middle columns of Table 4.

6.2. Atoms. Table 4 also compares the HF energy
components in the O6+ ion with those in the O atom.
Although the component rampdevs change significantly
between the two-electron ion and the neutral atom, it is clear
that the qualitative picture is unchanged, and consequently, the
rampdev in the total energy of the ion (20 mEh) is similar to
that in the atom (18 mEh). We conclude from this that almost
all of the total energy rampdev originates in the core electrons
and this, in turn, suggests that atomic and molecular chemistry
will not be significantly affected by rampification.

Table 3. HF Energies, Ionic Radii, and MO Coefficients for He-like Ions

HF energy Ionic radius 6-31+G MO coeffs R-31+G MO coeffs

6-31+G Δ 6-31+G Δ 6 3 1 + R 3 1 +

Li+ −7.23549 0.05970 0.5728 −0.0039 0.999 0.016 −0.009 0.001 0.998 0.132 −0.091 0.016
Be2+ −13.60974 0.03547 0.4148 +0.0014 0.998 0.014 −0.006 0.001 0.995 0.087 −0.054 0.013
B3+ −21.98379 0.02475 0.3251 +0.0017 0.998 0.014 −0.005 0.001 0.993 0.064 −0.036 0.009
C4+ −32.35763 0.02103 0.2674 +0.0011 0.998 0.013 −0.005 0.001 0.994 0.048 −0.024 0.007
N5+ −44.73121 0.01978 0.2257 +0.0008 0.998 0.011 −0.004 0.001 0.994 0.039 −0.019 0.006
O6+ −59.10445 0.02009 0.1974 +0.0007 0.998 0.010 −0.003 0.001 0.994 0.034 −0.016 0.006
F7+ −75.47742 0.02066 0.1747 +0.0006 0.998 0.009 −0.002 0.001 0.995 0.031 −0.013 0.004
Ne8+ −93.85004 0.02184 0.1565 +0.0005 0.998 0.007 −0.001 0.000 0.995 0.028 −0.011 0.004
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Table 5 gives the HF/6-31+G energies of the ground states
of first-row atoms. The R-31+G energies are systematically
higher than the 6-31+G energies and the differences are
strikingly similar to those in the two-electron ions (Table 3),
again confirming that most of the energetic effects of
rampification are confined to the core electrons. The table
also lists the ionization potentials and electron affinities of the
atoms. The rampdevs for these chemical properties are much
smaller than those for the total energies, indicating that the
core−valence interactions in an atom and its ion are similar and
the total energy rampdevs of the neutral and ionized species
therefore largely cancel. The largest rampdevs are found for the
ionization potentials of Li and Be.
6.3. Molecules. Table 6 shows UHF/6-31+G energies and

atomization energies for a set of molecules consisting of all
molecules in the G2−1 test set with first-row atoms only.68 The
total energy rampdevs are almost equal to the sum of the
rampdevs of the constituent atoms, reflecting the small core
effects on bonding. As usual, the errors are largest in molecules
containing Li and Be.
The atomization rampdevs are small and negative for most of

the first-row hydrides (i.e., LiH to HF) but significantly larger
and invariably positive for the molecules that have bonded
heavy atoms (i.e., Li2 to F2). Further analysis of these data
reveals that almost all of the rampdev stems from interactions
between ramps and the valence electrons on adjacent heavy
atoms. This explains, for example, why the largest rampdevs
arise for LiF (where the relatively inaccurate Li ramp is close to
the F atom) and for the triatomic CO2 (where there are four
adjacent ramp-valence interactions). In general, atomization
rampdevs tend to be positive, proportional to the number of
adjacent ramp-heavy-valence pairs in the molecule, and largest
when short bonds are involved.

Ionization potentials (Table 7), electron affinities (Table 8),
and proton affinities (Table 9) were also calculated for several
of the molecules. Because adding or removing electrons has no
effect on the number of adjacent ramp−valence interactions,
the rampdevs for these three tables are generally small
compared with the atomization rampdevs

7. CONCLUSIONS
We have argued that replacing highly contracted Gaussian core
functions by ramp functions is computationally beneficial and
chemically benign. The use of ramps is beneficial in three ways:
(1) The average degree of contraction of the basis set is

Table 4. Components of the HF Energy in O6+ Ion and O
Atom

O6+ ion O atom

6-31+G Δ 6-31+G Δ

Nuclear
attraction

−122.62577 +0.53138 −177.81659 +0.57390

Kinetic +58.75954 −0.48828 +74.66889 −0.53046
Total one-
electron

−63.86623 +0.04310 −103.14770 +0.04344

Coulomb +9.52356 −0.04603 +36.55634 −0.05153
α exchange −2.38089 +0.01151 −4.79992 +0.01276
β exchange −2.38089 +0.01151 −3.39218 +0.01291
Total two-
electron

+4.76178 −0.02302 +28.36424 −0.02586

Total −59.10445 +0.02009 −74.78346 +0.01758

Table 5. Atomic UHF Energies, Ionization Potentials, and Electron Affinities

UHF energy Ionization potential Electron affinity

Atom 6-31+G Δ 6-31+G Δ 6-31+G Δ

Li (2S) −7.43147 +0.05995 0.19599 −0.00025 −0.00578 +0.00004
Be (1S) −14.56960 +0.03454 0.29418 +0.00056 −0.02624 −0.00007
B (2P) −24.52373 +0.02352 0.28967 +0.00019 −0.01099 +0.00000
C (3P) −37.68092 +0.01947 0.39741 +0.00007 +0.01992 −0.00001
N (4S) −54.38629 +0.01796 0.51625 +0.00005 −0.07174 −0.00001
O (3P) −74.78346 +0.01758 0.43972 +0.00000 −0.01959 −0.00002
F (2P) −99.36752 +0.01706 0.57939 −0.00000 +0.04985 −0.00004
Ne (1S) −128.48355 +0.01727 0.73281 +0.00000 −0.28954 +0.00032

Table 6. Molecular UHF Total Energies and Atomisation
Energies

Total energy Atomization energy

Molecule 6-31+G Δ 6-31+G Δ

LiH −7.97969 +0.05985 0.04998 +0.00010
BeH −15.14458 +0.03492 0.07675 −0.00038
CH −38.25571 +0.01946 0.07655 +0.00001
CH2 (

1A1) −38.85758 +0.01943 0.18019 +0.00004
CH2 (

3B1) −38.91384 +0.01970 0.23644 −0.00023
CH3 −39.54869 +0.01959 0.37306 −0.00012
CH4 −40.18105 +0.01917 0.50719 +0.00030
NH −54.94577 +0.01798 0.06124 −0.00002
NH2 −55.53588 +0.01798 0.15312 −0.00002
NH3 −56.16611 +0.01793 0.28512 +0.00003
OH −75.36814 +0.01765 0.08645 −0.00007
H2O −75.99068 +0.01771 0.21076 −0.00013
HF −99.99535 +0.01714 0.12960 −0.00008
Li2 −14.86715 +0.11847 0.00420 +0.00143
LiF −106.93738 +0.07487 0.13839 +0.00214
C2H2 −76.79667 +0.03819 0.43836 +0.00075
C2H4 −78.00806 +0.03866 0.65328 +0.00029
C2H6 −79.19814 +0.03806 0.84689 +0.00088
CN −92.16142 +0.03634 0.09420 +0.00109
HCN −92.82964 +0.03624 0.26419 +0.00119
CO −112.67051 +0.03581 0.20613 +0.00124
HCO −113.18946 +0.03617 0.22684 +0.00088
H2CO −113.81153 +0.03628 0.35068 +0.00077
CH3OH −114.99158 +0.03627 0.53426 +0.00078
N2 −108.86670 +0.03505 0.09411 +0.00087
N2H4 −111.12416 +0.03562 0.35864 +0.00029
NO −129.17838 +0.03455 0.00863 +0.00099
O2 −149.54964 +0.03458 −0.01727 +0.00058
H2O2 −150.71399 +0.03471 0.15060 +0.00045
F2 −198.65489 +0.03349 −0.08015 +0.00064
CO2 −187.51806 +0.05233 0.27022 +0.00230
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significantly decreased; (2) large numbers of three- and four-
center two-electron integrals are removed; (3) many of the
other two-electron integrals reduce to multipole−multipole
interactions that are computable by matrix multiplication.
We have taken a standard Pople basis set (6-31+G) and

shown how to construct its “ramped” analog (R-31+G). Our
methodology is general and can easily be applied to any
segmented Gaussian basis set. (It is less effective for generally
contracted bases but Jensen has recently shown69 how to
segment a generally contracted basis set without loss of
accuracy.) We have shown that 6-31+G and R-31+G afford
similar theoretical model chemistries for small atoms and
molecules, at least at the HF level. Atomic ionization potentials
and electron affinities change by an average of 4.3 and 1.8 meV,
respectively, and the changes in molecular atomization energies
(1.6 kJ/mol), ionization energies (5.6 meV), electron affinity
(3.3 meV), and proton affinities (3.2 meV) are also small.
This preliminary study has explored the application of s-

ramps to first-row atoms (Li−Ne), but we expect that even
greater advantages will accrue when s and p ramps are applied
to second-row atoms (Na−Ar), where large numbers of high-
exponent Gaussian primitives can be eliminated. This and
constructing entirely new ramp-containing bases are important
areas of future research.
In addition to their computational expediency, ramps may

also be useful because of their cusps. For example, the accurate
calculation of nuclear magnetic resonance (NMR) properties
require a faithful representation of the nuclear neighborhoods
in molecules and, for this reason, Slater functions have been

advocated70 despite the difficult two-electron integrals that they
necessitate. Mixed ramp−Gaussian basis sets are less problem-
atic in this respect, and we will explore their application to
NMR calculations in future work.

■ APPENDIX: CALCULATION OF THE WN INTEGRALS
All of the integrals in section 5.2 are expressed in terms of the
auxiliary integrals
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For brevity, we define x = β (R − 1), y = βR, and z = β (R
+ 1).
Taylor expansion of the Gaussians, followed by termwise
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where Hk is a Hermite polynomial.
71 If the ramp and Gaussian

are concentric (i.e., R = 0), we find

∑β
π

β= ! + !
+ + !

−
!=

∞

w
n k
n k k

4 (2 1)
( 2 2)

( )
n

k

k3/2

0 (40)

Equations 39 and 40 are computationally useful when β/n is
small.
Binomial expansion of the ramp, followed by termwise

integration, yields various formulas. If R = 0, then
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If 0 < R ≤ 1 then
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If R ≥ 1, then
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where g(u) ≡ γ((k + 1)/2,u2) and γ is the incomplete gamma
function.71 Equations 41−43 are computationally useful when
β/n is large.
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Table 7. Molecular Ionization Potentials

Molecule Cation state 6-31+G Δ

CH4
2B1 0.44696 +0.00042

H2O
2B1 0.40469 +0.00005

HF 2Π 0.14772 −0.00022
C2H2

2Πu 0.36654 +0.00027

C2H4
2B1 0.32708 +0.00023

CO 2∑+ 0.47847 +0.00032

N2
2∑g

+ 0.57775 +0.00021

N2
2Πu 0.59361 +0.00036

O2
2Πg 0.50780 −0.00001

Table 8. Molecular Electron Affinities

Molecule Anion state 6-31+G Δ

CH 3∑− +0.01884 −0.00004
CH2

2B1 −0.04742 +0.00023

CH3
1A1 −0.06461 +0.00027

CN 1∑+ +0.10728 +0.00014

NH 2Π −0.05466 +0.00001

NH2
1A1 −0.03876 +0.00002

NO 3∑− +0.01891 −0.00020
OH 1∑+ −0.14235 +0.00018

O2
2Πg +0.00423 +0.00000

Table 9. Molecular Proton Affinities

Molecule 6-31+G Δ

C2H2 0.23270 −0.00013
NH3 0.35014 +0.00010
H2O 0.27606 −0.00012

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500615m | J. Chem. Theory Comput. 2014, 10, 4369−43764375

http://pubs.acs.org/
mailto:peter.gill@anu.edu.au


■ ACKNOWLEDGMENTS

P.M.W.G. thanks the ARC for funding (Grants DP120104740
and DP140104071).

■ REFERENCES
(1) Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry; McGraw-
Hill: New York, 1989; pp 136−138.
(2) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and
Molecules; Clarendon Press: Oxford, 1989; pp 12−13.
(3) Gill, P. M. W.; Crittenden, D. L.; O’Neill, D. P.; Besley, N. A.
Phys. Chem. Chem. Phys. 2006, 8, 15−25.
(4) Slater, J. C. Phys. Rev. 1930, 36, 57−64.
(5) Bouferguene, A.; Fares, M.; Hoggan, P. E. Int. J. Quantum Chem.
1996, 57, 810−810.
(6) Yanai, T.; Fann, G. I.; Gan, Z.; Harrison, R. J.; Beylkin, G. J.
Chem. Phys. 2004, 121, 6680−6688.
(7) Harrison, R. J.; Fann, G. I.; Yanai, T.; Gan, Z.; Beylkin, G. J.
Chem. Phys. 2004, 121, 11587−11598.
(8) Becke, A. D. J. Chem. Phys. 1988, 88, 2547−2553.
(9) Boys, S. F. Proc. R. Soc. (London) 1950, A200, 542−554.
(10) Kato, T. Comm. Pure. Appl. Math. 1957, 10, 151−177.
(11) Huzinaga, S. J. Chem. Phys. 1965, 42, 1293−1302.
(12) Hehre, W. J.; Stewart, R. F.; Pople, J. A. J. Chem. Phys. 1969, 51,
2657−2664.
(13) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56,
2257−2261.
(14) Schmidt, M. W.; Ruedenberg, K. J. Chem. Phys. 1979, 71, 3951−
3962.
(15) Feller, D. F.; Ruedenberg, K. Theor. Chim. Acta 1979, 52, 231−
251.
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