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ABSTRACT: Use of the resolution of Ewald operator method for computing
long-range Coulomb and exchange interactions is presented. We show that the
accuracy of this method can be controlled by a single parameter in a manner
similar to that used by conventional algorithms that compute two-electron
integrals. Significant performance advantages over conventional algorithms are
observed, particularly for high quality basis sets and globular systems. The
approach is directly applicable to hybrid density functional theory.

1. INTRODUCTION
The partitioning of the Coulomb operator (1/r12) into a short-
range part and a smooth long-range part is central to long-range
corrected density functional theory (LRC-DFT) methods7−15

such as CAM-B3LYP,8 HSE,9−12 LCgau-BOP,13 LC-ωPBE,14

and ωB97XD.15 It also naturally allows for different computa-
tional techniques to be applied to the two different
components, and this in turn can lead to performance gains.
Noting that with such a partitioning the short-range component
can be evaluated at a relatively small computational cost,10,16−20

the focus of this Letter is on computing the long-range part.
Specifically, we consider computing Hartree−Fock Coulomb
and exchange interactions for the long-range Ewald operator
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with values for ω (0.1−0.5) that reflect those commonly used
in LRC-DFT implementations.8−15

In previous work it was shown that a two-electron operator
like eq 1 may be resolved1−6,21,22 into a sum of products of one-
electron functions
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In practice, we truncate the resolution (eq 2) to a -term finite
sum
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where

= + + + + +k n l l m( 1) ( 1) 12

and

= ′ + +( 1)( 1)2

As a result, the long-range two-electron integrals (assuming real
basis functions)

∬μν λσ χ χ χ χ| = μ ν λ σLr r r r r r r( ) ( ) ( ) ( ) ( ) ( ) d d1 1 12 2 2 1 2 (4)

can be represented by a sum of products of one-electron
overlap integrals

∑μν λσ μν λσ| ≈ | |nlm nlm( ) ( )( )
nlm (5)

That is, the traditional calculation of long-range two-electron
integrals can be replaced by the calculation of the auxiliary
integrals

∫μν χ χ ϕ| = μ νnlm r r r r( ) ( ) ( ) ( ) dnlm (6)

In this Letter, we outline the recursion relations used to
compute the auxiliary integrals (eq 6), show how the accuracy
of this method can be controlled using a single threshold
parameter, and provide preliminary performance data that
compare this new approach with the traditional approach of
evaluating two-electron integrals. This evaluation is performed
in the context of computing long-range Coulomb and exchange
energies for Hartree−Fock wave functions.
The closed-shell Hartree−Fock Coulomb and exchange

matrices are given by

∑ ∑ μν λσ= |μν
λσ
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where N is the number of basis functions, cμa are the molecular
orbital (MO) coefficients, and occ represents the set of O
occupied orbitals. Substituting eq 5 into these expressions
yields the Resolution of the Coulomb Operator (RO)
expressions:
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where Dλσ is the density matrix. The efficient evaluation of
these equations, their accuracy compared to traditional
methods, and the speed of the RO method are now considered.
We note that eqs 2−12 are also true for full Coulomb and
short-range Coulomb operators. Unless otherwise stated,
atomic units are used throughout.

2. COMPUTATIONAL CONSIDERATIONS
The resolution function, ϕnlm in eq 2 can take a myriad of
forms. In this Letter, we discuss functions of the form

ϕ λ= q j r Yr r( ) ( ) ( )nlm n l n lm (13)

where jl is a spherical Bessel function and Ylm is a real spherical
harmonic. For long-range Ewald resolution, we precompute
λn = 2βnω and qn = 4(bnω)

1/2 where βn and bn are the positive
Hermite roots and weights of +2( 1)-point Gauss−Hermite
quadrature.5,21

In the following subsections, we describe three computa-
tional aspects of the RO J and K algorithm that arise from the
choice of resolution function eq 13. First, the general outline of
the algorithm is discussed. Then, an accuracy control
mechanism via a single THRESH value is explained. Last, we
elaborate on the calculation of auxiliaries, the lowest layer of the
algorithm.
2.1. Outline of the Algorithm. We have written a C++

routine to evaluate the auxiliaries (eq 6) and implemented the
rest of the HF J and K matrix calculation in the X10 language, a
modern partitioned global address space language which
represents data locality in the form of places and supports a
task-parallel model of asynchronous activities.23 We expect that
these features will facilitate a future distributed parallel
implementation. The algorithm faithfully follows eqs 9−12.
To reduce the memory footprint, we place the loop over n in
resolution (eq 2) as the outermost loop. For J matrix
calculation described by eqs 9 and 10, a single loop over a
list of significant shell pairs is used instead of double loops over
a number of basis functions. For K matrix calculation, we
employ DGEMM matrix−matrix multiplication from the BLAS
library24 for both eq 11 and 12. A simple pseudocode is shown

in the scheme below. (Einstein summation convention is used.)
Our full source code25 is freely available in Pumja Rasaayani
(Sanskrit for “quantum chemistry”), a program in the ANU-
Chem package.26 All accuracy and timing results given below
use X10 version 2.3 and the corresponding tagged version of
ANU-Chem.

From the pseudocode, one can infer that the bottleneck is
the matrix−matrix multiplications to produce the exchange
matrix at lines 7 and 8 costing ON( )2 operations. However,
these are handled by DGEMM which can be evaluated very
efficiently. The memory costs for matrices A and B are

+N( ( 1) )2 2 and +ON( ( 1) )2 , respectively.
2.2. Accuracy Control. We introduce a single parameter,

THRESH, to control the accuracy of the calculation. Given a
THRESH value and molecular geometry, we truncate the sum
(eq 2) to ′ and using the following procedure. First, we
determine the radius of a given molecule using,

= | | +R r irmax{ ( )}i w (14)

where ri is the position of the ith nucleus and rw(i) is the van
der Waals radius of the ith atom. The molecule is translated to
minimize the radius R. We then find and ′ using formulas
modified from Limpanuparb.6,21
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We finally determine the largest that satisfies the following
condition.
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These ′ and are generally sufficient to guarantee a
truncation error in the order of 10−THRESH for the
approximation eq 3. It should be noted that eqs 15−17 differ
slightly from the original paper5 because we choose to start the
summation (eq 3) from n = 0 instead of n = 1.21 The default
limits for and in our program are 300 and 200,
respectively, but users can lower this manually via an option in
a job input file.

2.3. Auxiliaries. This subsection closely mirrors the
previous paper6 in the series but presents a complete set of
equations in real form (as opposed to complex form). The
auxiliaries (eq 6) are built up from fundamental integrals (eq
19a) by vertical and horizontal recurrence relations. In trivial
cases, the fundamental integrals 19a become 19b and 19c when
P = 0 and λn = 0, respectively.
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Additional quantities required for the fundamental integrals are
presented below.
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We use the following derivative properties of real solid
harmonics Rlm(r) = rlYlm(r)
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to simplify the RO vertical recurrence relation (RO-VRR) eq
29 in Limpanuparb et al.6 to
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If P = 0, the RO-VRR (eq 23) still holds, but we observe that
[00|nlm](p) = 0 for l + p > a + b. If λn = 0, the RO-VRR (eq 23)
collapses to standard Boys recurrence relation (VRR)27

ζ
+ | = − | + − |P A

a
a 1 0 a0 a 1 0[( ) ( )[

2
[( )j j j

j
j

(24)

and only p = l = m = 0 is required.
Following the suggestion in the previous paper,6 we use the

equations described above to generate [a0|nlm], [(a+1)0|nlm],
..., [(a+b)0|nlm] integrals and contract them into (a0|nlm), ((a
+1)0|nlm), ..., ((a+b)0|nlm). Then we apply standard
horizontal recurrence relation (HRR)28

+ | = + | + + |A Ba b 1 a 1 b ab( ( ) (( ) ( )(j j j j (25)

This yields the desired (ab|nlm) class as a final result. The
scheme described above is also readily applicable to the Bessel
resolution of the Coulomb operator.4 The only change is in the
precomputed λn and qn, which are much simpler for the
Coulomb operator.

3. NUMERICAL RESULTS

Our test cases comprise typical biomolecules (water clusters,29

polypeptides,30 and triglyceride31), a conducting system
(buckminsterfullerene32), and a weakly interacting system
(helium cluster33). Geometries are described in the references
given here. All calculations were run on a single core of a
2.93 GHz Intel Nehalem X5570 CPU with 24 GB DDR3-1333
memory. We compared the performance and accuracy of our
code against Q-Chem 4.0.0.1.34 We use MOs from
diagonalization of the core Hamiltonian and Cartesian orbitals
for all calculations in this section.
To assess accuracy, we report Frobenius norms ∥J − JREF∥,

∥K − KREF∥, maximum deviations max |Jμv − Jμv
REF|, max |Kμv −

Kμv
REF|, and relative error in Coulomb and exchange energies

ε = − −E E
E

log10

REF

REF
(26)

where “REF” refers to a calculation at THRESH = 14 and the
energies are defined below.
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3.1. Accuracy Test. We first explore how RO THRESH
performs and compare it with traditional two-electron integral
THRESH in Q-Chem. Four representative examples given in
Table 1 show that (a) the accuracy of RO approximation at a
given THRESH remains more or less the same when different

basis sets are used and (b) the accuracy of RO energies can be
controlled by THRESH in a very similar manner to a
conventional algorithm.

3.2. Timing Test. To compare the performance of RO and
conventional algorithms, we timed one HF SCF cycle at
THRESH = 6 and tabulated the results in Table 2. The RO
calculation consists of three tasks: generation of auxiliaries and J
and K matrix calculations. The majority of RO computation
cost lies in two DGEMM calls from K matrix calculations and
the generation of auxiliary integrals while the J matrix
calculation time is relatively small (<6%).

Table 1. Error in J and K Matrices and Energies Calculated by the Resolution and Q-Chem at Various ω and THRESHa

RO Q-Chem

molecule/basis set ω THRESH ΔJ ΔK εJ εK εJ εK

triacetin/6-311G 0.1 6 11.91 (4.99) 12.50 (7.32) 9.54 7.98 7.1 5.8
triacetin/cc-pVDZ 0.1 6 10.71 (4.85) 13.20 (6.82) 9.26 7.99 6.0 6.1
triacetin/cc-pVTZ 0.1 6 10.53 (4.37) 14.18 (6.69) 8.38 7.86 6.5 5.4
(H2O)10/cc-pVDZ 0.1 6 9.30 (6.20) 11.31 (8.34) 8.58 7.80 6.29 6.13

0.1 7 11.63 (7.20) 12.86 (8.76) 11.38 9.60 7.31 8.52
0.1 8 12.71 (8.23) 14.15 (8.76) >12.68 >10.45 8.82 8.07
0.5 6 10.96 (5.95) 11.27 (7.29) 8.82 7.73 6.36 6.42
0.5 7 13.17 (6.93) 12.91 (8.59) 10.47 9.32 7.38 7.48
0.5 8 14.04 (7.96) 13.42 (8.77) 11.11 9.95 8.80 8.46

C60/STO-3G 0.1 6 9.84 (5.17) 10.24 (7.32) 8.56 7.11 5.12 5.08
0.1 7 12.46 (6.15) 11.54 (8.31) 11.28 8.43 5.98 7.57
0.1 8 13.14 (9.20) 12.90 (9.62) 12.44 9.82 7.68 7.48
0.5 6 9.63 (4.97) 13.01 (7.06) 8.54 8.21 5.11 5.03
0.5 7 12.31 (5.96) 12.34 (8.07) 10.60 8.77 5.96 6.30
0.5 8 14.06 (9.47) 14.16 (9.81) 11.99 10.38 7.67 8.35

He9/aug-cc-pVQZ 0.1 6 11.34 (5.25) 12.40 (6.56) 7.68 6.64 7.73 7.45
0.1 7 12.04 (6.55) 13.67 (6.56) 8.39 7.68 8.44 8.56
0.1 8 13.37 (7.48) 15.28 (6.56) 9.56 8.80 9.84 8.85
0.5 6 12.18 (5.04) 12.68 (6.67) 8.22 7.78 7.70 7.72
0.5 7 13.20 (6.35) 13.84 (6.67) 9.59 9.21 8.52 9.40
0.5 8 14.51 (7.28) 14.12 (6.67) 11.08 >10.36 9.82 8.98

aThe Δ columns show −log10 ||J − JREF|| (−log10 max |Jμv − Jμv
REF|) or their counterpart for K. Cases where energies agree to the 10th decimal place

are indicated by >.

Table 2. J and K Matrices Generation Time of RO and Conventional Algorithms, THRESH = 6

SCF time/seconds

RO

molecule basis set ω O N R ′ aux J K total Q-Chema

triacetin 6-31G* 0.1 58 295 25.26 6 7 0.58 0.07 0.88 1.53 2.44
″ ″ 0.2 ″ ″ ″ 9 14 2.13 0.31 4.67 7.11 ″
″ ″ 0.5 ″ ″ ″ 18 34 19.82 3.11 47.98 70.91 ″
″ ″ 1.0 ″ ″ ″ 33 67 144.54 20.77 318.86 484.17 ″

(H2O)5 cc-pVDZ 0.3 25 125 16.19 9 13 0.54 0.07 0.48 1.09 0.53
″ cc-pVTZ ″ ″ 325 ″ ″ ″ 2.04 0.33 3.02 5.39 5.90
″ cc-pVQZ ″ ″ 700 ″ ″ ″ 7.76 1.34 13.75 22.85 99.50

(H2O)10 cc-pVDZ ″ 50 250 18.97 9 16 2.22 0.31 3.45 5.98 2.91
″ cc-pVTZ ″ ″ 650 ″ ″ ″ 9.16 1.60 24.02 34.78 37.20
″ cc-pVQZ ″ ″ 1400 ″ ″ ″ 35.73 6.97 109.56 152.26 510.00

1D-alanine4 6-311G 0.3 77 326 34.52 15 27 10.60 2.06 47.03 59.69 4.60
3D-alanine4 ″ ″ ″ ″ 22.91 11 19 5.40 0.92 16.89 23.21 6.25
1D-alanine8 ″ ″ 153 646 61.64 24 46 93.96 17.39 1400.22 1511.57 20.70
3D-alanine8 ″ ″ ″ ″ 30.56 13 24 24.84 4.61 226.71 256.16 37.10

aAOints time from full Coulomb operator is reported here. This is a good approximation for conventional long-range J and K calculation time as the
number of integrals required is roughly the same.
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From the triacetin result, we observe that the RO parameters
′ and are sensitive to ω, and as a result, the computational

time increases rapidly with ω. Therefore, we choose ω = 0.3, an
optimized value in Chai and Head-Gordon ωB97XD15 for all
other cases. A series of calculations on water clusters shows that
RO is much faster than a conventional calculation when
employed in high quality basis (cc-pVQZ) calculations. It is
obvious from previous sections that the RO parameters ′ and

do not depend upon basis set; as a result RO calculations
scale only quadratically with the basis set size. This compares
very favorably with the conventional methods, whose cost
grows quartically with the basis set size for a fixed molecule.
We then look at the effect of molecular shape on the cost of

RO calculation in polyalanine test cases. Unlike traditional
algorithms where various cutoff strategies are very effective in
1D chain-like molecules, RO is more effective for 3D globular
molecules. This is due to the fact that the molecular radius R is
an important determining factor for ′ and .
We note that these results are only preliminary and may be

improved further by various approaches. One possibility is to
use nonrectangular truncation of eq 2. There are three subscript
variables n, l, and m that may be independently fine-tuned, and
eq 3 is just the simplest form of truncation for general
calculations. Rod-like 1D molecule calculations may benefit
from additional m-truncation. The other possibility is to take
advantage of the sparsity of the auxiliary integral matrix 6 in the
computation of eqs 9−12. Therefore, the results presented here
should be viewed as indicating trends rather than the best
possible computation times. We expect reduced CPU times in a
well-optimized implementation of RO.

4. CONCLUDING REMARKS
Our implementation of the resolution of the long-range Ewald
operator has shown that the cost of HF J and K matrix
calculation using high quality basis sets can be significantly
reduced. Our algorithm scales only quadratically with respect to
basis set size (for a fixed molecule) and works best for compact
globular molecules, for which traditional cutoff strategies are
ineffective. The performance of the RO algorithm can be
improved further by exploiting the short-range nature of
exchange interaction to reduce ′ and by making use of parallel
computation. These possibilities will be explored in our future
papers.
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