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ABSTRACT: We consider the two-electron position and momentum dot products, α = r1·r2 and β = p1·p2, and present a
method for extracting their distributions, A(α) and B(β), from molecular wave functions built on Gaussian basis functions. The
characteristics of the Hartree−Fock AHF(α) and BHF(β) for He and the first-row atoms are investigated, with particular attention
to the effects of Pauli exchange. The effects of electron correlation are studied via the holes, ΔA(α)  A(α) − AHF(α) and
ΔB(β)  B(β) − BHF(β), and the hole structures are rationalized in terms of radial and angular correlation effects. Correlation
effects are also examined through an analysis of the first moments of A(α), AHF(α), B(β), and BHF(β).

1. INTRODUCTION
Accurate quantum chemical calculations cannot ignore the
effects of electron correlation. However, despite the constant
evolution of existing methods1−3 and the development of new
approaches,4−8 a universal and efficient solution to the
correlation problem remains elusive. Density functional theory
(DFT)9 has enjoyed years of success as an accurate and
efficient computational approach, but recently many of its flaws
have been exposed.10−18 New routes have been taken to
develop improved density functionals,19,20 but a more
promising solution may lie with the two-electron functionals
of intracule functional theory (IFT).21−26

Two-electron probability distribution functions, particularly
intracules, are useful tools for understanding the physical details
of electron correlation,27−35 and this is essential, not only for
the development of IFT but for the development of any
approach to the correlation problem. The best known are the
(spherically averaged) position27 P(u) and momentum29 M(v)
intracules:
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where r12 = |r1 − r2|, p12 = |p1 − p2|, δ is the Dirac delta
function, and Ψ and Φ are the N-electron wave functions in
position and momentum space, respectively. P(u) and M(v)
give the probability distributions of the relative distance u and
momentum v of pairs of electrons in the system. If desired, the
effects of electron correlation can be isolated by constructing
the intracule holes

Δ = −P P PHF (2a)

Δ = −M M MHF (2b)

which are the differences between the exact and Hartree−Fock
(HF) intracules.
The prototypical hole is ΔP for the helium atom, first given

by Coulson and Neilson,27 which shows that correlation
decreases the probability of small u and increases the

probability of large u; i.e., it tends to push electrons apart.
Banyard and Reed found29 that ΔM for helium is more
complicated than ΔP and that it results from the competing
effects of angular and radial correlation. Recently, subtler
features of intracule holes have been uncovered,32−35 in both
position and momentum space, and these have further refined
our picture of the correlation phenomenon.
Because the P(u) and M(v) intracules are one-dimensional

projections of the six-dimensional two-electron densities ρ(r1,
r2) and Π(p1, p2), it can sometimes be difficult to decipher the
effects of electron correlation revealed by intracule holes. When
this is the case, one may turn to objects of higher
dimensionality such as the Intex distribution36,37 or to other
one-dimensional functions.38 For example, the interelectronic
angles ∠r1Orr2 and ∠p1Opp2 (where the origin O refers to the
position or momentum of a nucleus) have been studied at both
the Hartree−Fock39 and correlated29,31 levels in atoms but not,
as far as we know, in molecules.
In the present work, we focus on the dot products, α = r1·r2

and β = p1·p2. Their distributions A(α) and B(β), which we call
the position-dot and momentum-dot distributions, reveal
orientational information about the positions and momenta of
the electrons and this can help to resolve ambiguities in P(u)
and M(v). For example, although a large value of v could
pertain either to a situation in which the two electrons are
moving in the same direction at very different speeds or to one
in which they are moving in opposite directions at similar
speeds, knowledge of B(β) helps to distinguish these
possibilities and, indeed, it did so in our recent work on the
motion of the electrons in the H2 molecule.

35

Instead of calculating A(α) and B(β), one could extract
orientational information from a combination of the intracule
and the extracule, where the latter is the distribution of the
mean coordinate (r1 + r2)/2 or (p1 + p2)/2. However, A(α)
and B(β) yield this information more directly.
It should be noted that, unlike intracules but like extracules,

A(α) and B(β) depend on the choices of origins, Or and Op, in
position and momentum space, respectively. For atoms, it is
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natural to choose Or to be the nucleus, and we have done so
throughout this study: for molecules, the choice is less obvious.
For any stationary system, it is natural to choose Op = (0,0,0).
In the next section, we introduce a method for calculating

A(α) and B(β) for an arbitrary molecular system whose wave
function is expanded in a Gaussian basis set. After discussing
computational details in section 3, we examine AHF(α) and
BHF(β) for small atoms in section 4 and conclude with a study
of correlation effects in section 5. Atomic units are used
throughout.

2. THEORY

We define the two new distributions by the expectation values
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N N
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When devising methods to construct the distributions of the
dot product variables r·p and r12·p12, Bernard et al.
discovered24,40,41 that it is straightforward to compute the
Fourier transform of the desired distribution and then to back-
transform this. We have found that this strategy is also effective
for the generation of A(α) and B(β).
For the Fourier transforms Â(k) and B̂(k), the fundamental

integrals42,43 over s-type Gaussians with exponents ζa, ζb, ζc,
and ζd and centers A, B, C, and D are given by
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Integrals of higher angular momentum can be constructed
using a five-term recurrence relation (RR) similar to the one we
have recently derived for Dot and Posmom intracule
integrals.26 The RRs for augmenting the angular momentum
of the Gaussian with center A in the i direction (i = x, y, z) are
given by
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where a = (ax, ay, az) is a vector of angular momentum
quantum numbers and g = √−1. The RRs for augmenting the
angular momentum on centers B, C, and D are provided in the
Supporting Information. For atomic systems, we have P = Q =
R = S = 0, and the first term of each RR vanishes.
The Fourier transforms are formed by contracting these

integrals with the two-electron reduced density matrix, i.e.,

∑̂ = Γ ̂A k abcd( ) [ ]
abcd

abcd A
(10a)

∑̂ = Γ ̂B k abcd( ) [ ]
abcd

abcd B
(10b)

Finally, the desired distributions are found as the inverse
Fourier transforms
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and, if these are constructed using both correlated and
uncorrelated wave functions, the resulting holes are given by

Δ = −A A AHF (12a)

Δ = −B B BHF (12b)

It follows from the identities
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that the second radial moment44 ⟨r2⟩ and the kinetic energy T
are related to moments of the two-electron distributions by
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Likewise, the correlation contributions to ⟨r2⟩ and T can be
related to hole moments by
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In these relations, we have introduced quantities such as the
reduced second moment of the position intracule, which is
defined as
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3. COMPUTATIONAL DETAILS
ROHF and CISD wave functions were computed using the aug-
cc-pVTZ basis set for He and the aug-cc-pCVQZ(−fg) basis set
for Li to F. (All calculations used six Cartesian, rather than five

pure, d functions.) Excited-state HF wave functions for helium
were found using the Maximum Overlap Method (MOM)45,46

within the Q-Chem software package.47 The ROHF and CISD
wave functions were computed using the GAMESS48 software
package, and the two-electron distributions were extracted from
the resulting wave functions using in-house software.
In section 4, we study the effects of Pauli exchange by

restricting our attention to the distributions AHF(α) and BHF(β)
obtained from HF wave functions. In section 5, we examine the
effects of correlation and contrast these with those of exchange.

4. HARTREE−FOCK CALCULATIONS

4.1. AHF(α) and BHF(β) in Small Atoms. The ground, or
singlet 1s2, state of the He atom is more compact than the
triplet 1s2s and 1s2p states, and this is reflected in the ⟨r2⟩
values in Table 1. It is therefore unsurprising to find that the
distribution of α = r1·r2 in the 1s2 state is much narrower than
those in the triplet 1s2s and 1s2p states (Figure 1, left).
The electrons move more rapidly in the 1s2 state than in the

triplet 1s2s and 1s2p states, and this is reflected in the T values
in Table 1. It is therefore unsurprising to find that the
distribution of β = p1·p2 in the 1s2 state is much broader than
those in the triplet 1s2s and 1s2p states (Figure 1, right).
The distributions in Figure 1 also differ in their symmetry

about the origin. The symmetry of AHF(α) in the 1s
2 and triplet

1s2s states means that the two electrons are equally likely to be
found on the same, or opposite, sides of the nucleus. The
symmetry of BHF(β) in the 1s2 and triplet 1s2s states means the
electrons are equally likely to be found traveling with aligned,
or opposed, momenta. In contrast, AHF(α) and BHF(β) are
asymmetric in the triplet 1s2p state, implying that the electrons
are more likely to be found on opposite sides of the nucleus
(where α < 0) than on the same side (where α > 0) and that
they are more likely to be found with opposed (β < 0) rather

Table 1. Decomposition of ⟨r2⟩ and T into Two-Electron Components, eq 14

atom ⟨r2⟩ P2 A1 T M2 B1

He (1s2) 2.370 2.370 0 2.861 5.722 0
He (triplet 1s2s) 18.406 18.406 0 2.215 4.429 0
He (triplet 1s2p) 6.925 7.272 −0.173 2.436 5.404 −0.266
He (triplet 1s3d) 4.715 4.715 0 3.514 7.028 0
Li 18.632 18.632 0 7.433 14.865 0
Be 17.320 17.320 0 14.573 29.146 0
B 15.862 16.571 −0.354 24.529 49.258 −0.101
C 13.803 14.512 −0.354 37.688 75.931 −0.278
N 12.093 12.703 −0.305 54.399 109.857 −0.530
O 11.215 11.731 −0.258 74.808 151.285 −0.835
F 10.259 10.693 −0.217 99.405 201.235 −1.213
Ne 9.385 9.751 −0.183 128.539 260.403 −1.663

Figure 1. Position-dot (left) and momentum-dot (right) distributions for low-lying states of He.
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than aligned (β > 0) momenta. Surprisingly, however, higher
excited states (e.g. triplet 1s3d) have symmetric distributions.
This curious anomaly was first explained by Koga.39 In cases

such as the triplet 1s2p state, where the electrons occupy
orbitals whose angular momenta differ by unity, the exchange
effect increases their angular separation, leading to an increase
in the probability of α < 0 and breaking the symmetry of
AHF(α). A similar effect is observed in momentum space, where
the exchange interaction leads to an increased probability of
opposed momenta, β < 0.
The current analysis of the effects of Pauli exchange on the

low-lying states of helium complement the analysis of singly
excited states of two-electron ions by Cann et al.,49,50 wherein
the effects of exchange are revealed through comparison of
both one and two-electron distributions of singlet and triplet
states with the same electronic configuration.
Understanding AHF(α) and BHF(β) for the low-lying states of

helium enables us to rationalize the corresponding distributions
in many-electron atoms such as Be, N, and Ne (Figure 2). As
the nuclear charge increases, the atoms become more compact;
small r1, r2, and α = r1·r2 values become more likely; and the
AHF(α) distribution becomes narrower. At the same time, large
p1, p2, and β = p1·p2 values become more likely, and the BHF(β)
distribution becomes broader.
As before, exchange effects play a subtle role. In Be, which

has only 1s and 2s electrons, AHF(α) and BHF(β) are symmetric.
This means that a given pair of electrons in Be are equally likely
to be found on the same, or opposite, sides of the nucleus and
to have aligned, or opposing, momenta. However, in N and Ne,
exchange between the 2p and ns electrons skews both AHF(α)
and BHF(β) to the left. These effects are visible upon careful
inspection of Figure 2.
4.2. Two-Electron Decompositions of Atomic Size and

Kinetic Energy. The size ⟨r2⟩ and kinetic energy T of a system
are one-electron quantities. Nonetheless, eq 14 shows that they
can be exactly decomposed into an intracular contribution from
the second moment of P(u) or M(v) and an orientational
contribution from the first moment of A(α) or B(β). Table 1

illustrates this for various states of helium and the ground-state
first-row atoms.
The first moment of a symmetric distribution is identically

zero, and therefore the orientational contributions to ⟨r2⟩ and T
vanish in the 1s2 and triplet 1s2s states of He. For the same
reasons, the orientational contributions to ⟨r2⟩ and T vanish in
the ground-state Li and Be atoms.
In the heavier atoms, the orientational contribution A1 to the

atomic size is always negative, indicating that the contraction of
atomic radii across the periodic table is aided by Pauli exchange.
This interaction tends to keep s and p electrons in opposite
hemispheres, thus reducing their mutual repulsion and
facilitating a more compact electron density. As we proceed
from B to Ne, the atomic radii become smaller, and the
magnitude of the orientational contribution decreases.
In these same atoms, because exchange increases the

probability that s and p electrons move in opposite directions,
the relative-motion component overestimates the kinetic
energy and has to be corrected by a negative orientational
contribution B1. As we proceed from B to Ne, the electrons
move more quickly, and the magnitude of this orientational
correction increases.

5. CORRELATED CALCULATIONS
5.1. A(α) and B(β) in the He Atom. The position-dot hole

ΔA(α) and the momentum-dot hole ΔB(β) of helium are
shown in Figure 3. Like ΔM(v), these holes can be understood
in terms of angular and radial correlation effects,29 and we
define the radial components by

Δ = −A A As s
rad HF (17a)

Δ = −B B As s
rad HF (17b)

(the superscript indicates that only s basis functions are used)
and the angular components by

Δ = Δ − ΔA A Aang rad (18a)

Figure 2. Position-dot (left) and momentum-dot (right) distributions for Be, N, and Ne.

Figure 3. Position-dot (left) and momentum-dot (right) holes in the ground state of He.
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Δ = Δ − ΔB B Bang rad (18b)

ΔArad is symmetric because, by definition, radial correlation
cannot affect the interelectronic angle θ12. It favors moderate
r1r2 values, at the expense of small and large ones, for it reduces
the probability of both electrons being close to, or far from, the
nucleus, while increasing the probability that one is close and
the other is far. In contrast, angular correlation favors negative
α (θ12 > 90°) over positive α (θ12 < 90°). The relative
magnitude of the radial and angular correlation effects on two-
electron distributions have been the subject of previous
studies.51,52

ΔBrad is symmetric and favors moderate p1p2 values,
presumably because the electron that is close to the nucleus
is moving fast and the distant one is moving slowly. Angular
correlation increases the probability of aligned momenta29 and
therefore favors positive β over negative β.
Angular correlation works in the same direction as exchange

in position space, but in the opposite direction in momentum
space. Thus, whereas both exchange and correlation tend to
keep the electrons in opposite hemispheres of the atom (α <
0), exchange increases the likelihood that electrons travel in
opposite directions (β < 0) and correlation increases the
likelihood that they travel in the same direction (β > 0).
5.2. Correlation Effects in First-Row Atoms. Table 2

shows how electron correlation affects the size ⟨r2⟩ and kinetic

energy T of the ground-state first-row atoms, and eq 15 relates
these changes to the correlation effects on the two-electron
moments P2, A1, M2, and B1. Correlation consistently decreases
A1 (because it increases the angular separation of the electrons)
and increases B1 (because it aligns their momenta), but whereas
the ΔB1 are fairly uniform, the ΔA1 are particularly large for Be,
B, and C. These anomalies reflect the strong static correlation
in these atoms, which arises because of the near-degeneracy of
their occupied 2s and unoccupied 2p orbitals and which leads
to pronounced angular correlation between the L shell
electrons.53−55

In most of the atoms, the decrease in A1 is offset by an
increase in P2 (the mean squared interelectronic distance).
However, in the Li atom, ΔP2 is negative, implying that
correlation decreases ⟨u2⟩. The fact that correlation also
decreases ⟨u−1⟩ (the two-electron energy) means that, in this
atom, correlation increases the likelihood of moderate u values,
at the expense of both large and small ones. The Li atom is
therefore another simple system with a secondary position hole
(see Figure 4).32−35

Correlation almost always reduces the electrostatic energy
between electrons, and by the virial theorem, the kinetic energy

therefore increases. However, although the total change Tc is
positive, the results in Table 2 reveal that it comes from a
relative-motion component ΔM2/2, which is negative, and a
momentum-alignment component ΔB1, which is strongly
positive. In other words, when correlation is introduced,
whereas the other electrons seem to move more slowly from
the perspective of a given electron, they are actually all moving
faster.

6. CONCLUSIONS
The intracules P(u) and M(v) are useful for examining details
of electronic structure including the effects of electron
correlation. However, ambiguities may arise due to the
dependence of u (or v) on both the magnitudes and relative
orientation of r1 and r2 (or p1 and p2). The position-dot, A(α),
and momentum-dot, B(β), distributions introduced here offer
both a tool for resolving such ambiguities and a new perspective
on the relative motion of electrons. They also provide a direct
connection between P(u) and M(v) and their associated one-
electron properties, ⟨r2⟩ and T.
Exchange effects between electrons in orbitals whose angular

momenta differ by unity breaks the symmetry of the A(α) and
B(β) distributions, skewing them to the left. In position space,
this leads to an increase in the angular separation of the
electrons. In momentum space, it increases the probability of
opposing electron momenta. This exchange effect plays a role
in the well-known decrease in atomic radii from left to right
across the periodic table. As the 2p orbitals are filled from B to
Ne, the exchange between s and p electrons increases their
angular separation and mitigates the increase in electron
repulsion as the atomic radii decrease.
Correlation effects on A(α) and B(β) can be decomposed

into radial and angular contributions. The radial effects are
symmetric and increase the probability of moderate α and β
values. The angular effects are asymmetric, increasing the
probability of α < 0 (i.e., the electrons are on opposite sides of
the nucleus) and β > 0 (i.e., they travel in the same direction).
Overall, exchange and correlation have similar effects on

A(α) but opposing effects on B(β).
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Table 2. Decomposition of ⟨r2⟩c and Tc into Two-Electron
Components, eq 15

atom ⟨r2⟩c ΔP2 ΔA1 Tc ΔM2 ΔB1

He 0.023 0.155 −0.066 0.037 −0.250 0.162
Li −0.209 −0.141 −0.034 0.002 −0.302 0.153
Be −0.915 0.337 −0.626 0.085 −0.118 0.144
B −0.360 0.154 −0.257 0.112 −0.086 0.155
C −0.033 0.182 −0.108 0.134 −0.079 0.174
N 0.129 0.207 −0.039 0.149 −0.100 0.199
O 0.220 0.301 −0.040 0.199 −0.109 0.253
F 0.212 0.284 −0.036 0.252 −0.140 0.322
Ne 0.192 0.253 −0.031 0.308 −0.193 0.405

Figure 4. Position hole for Li.
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(3) Rolik, Z.; Szabados, A.; Surjań, P. R. J. Chem. Phys. 2008, 128,
144101.
(4) Goedecker, S.; Umrigar, C. J. Phys. Rev. Lett. 1998, 81, 866−869.
(5) Giesbertz, K. J. H.; Baerends, E. J. J. Chem. Phys. 2010, 132,
194108.
(6) Piris, M.; Matxain, J. M.; Lopez, X.; Ugalde, J. M. J. Chem. Phys.
2010, 133, 111101.
(7) White, S. R. Phys. Rev. Lett. 1992, 69, 2863−2866.
(8) Chan, C. K.-L. J. Chem. Phys. 2004, 120, 3172−3178.
(9) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and
Molecules; Clarendon Press: Oxford, U. K., 1989.
(10) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J.
Chem. Phys. 2000, 112, 7374−7383.
(11) Kurita, N.; Sekino, H. Chem. Phys. Lett. 2001, 348, 139−146.
(12) Gill, P. M. W. Aust. J. Chem. 2001, 54, 661−662.
(13) Woodcock, H. L., III; Schaefer, H. F., III; Schreiner, P. R. J. Phys.
Chem. A 2002, 106, 11923−11931.
(14) Dreuw, A.; Head-Gordon, M. J. Am. Chem. Soc. 2004, 126,
4007−4016.
(15) Wodrich, M. D.; Corminboeuf, C.; Schleyer, P. Org. Lett. 2006,
8, 3631−3634.
(16) Cohen, A. J.; Mori-Sanchez, P.; Yang, W. Science 2008, 321,
792−794.
(17) Brittain, D. R. B.; Lin, C. Y.; Gilbert, A. T. B.; Izgorodina, E. I.;
Gill, P. M. W.; Coote, M. L. Phys. Chem. Chem. Phys. 2009, 11, 1138−
1142.
(18) Gill, P. M. W.; Loos, P. F. Theor. Chem. Acc. 2012, 131, 1069.
(19) Gaiduk, A. P.; Staroverov, V. N. J. Chem. Phys. 2010, 133,
101104.
(20) Vydrov, O. A.; Van Voorhis, T. J. Chem. Phys. 2010, 133,
244103.
(21) Gill, P. M. W.; Crittenden, D. L.; O’Neill, D. P.; Besley, N. A.
Phys. Chem. Chem. Phys. 2006, 8, 15−25.
(22) Dumont, E. E.; Crittenden, D. L.; Gill, P. M. W. Phys. Chem.
Chem. Phys. 2007, 9, 5340−5343.
(23) Crittenden, D. L.; Dumont, E. E.; Gill, P. M. W. J. Chem. Phys.
2007, 127, 141103.
(24) Bernard, Y. A.; Crittenden, D. L.; Gill, P. M. W. Phys. Chem.
Chem. Phys. 2008, 10, 3447−3453.
(25) Pearson, J. K.; Crittenden, D. L.; Gill, P. M. W. J. Chem. Phys.
2009, 130, 164110.
(26) Hollett, J. W.; Gill, P. M. W. Phys. Chem. Chem. Phys. 2011, 13,
2972−2978.
(27) Coulson, C. A.; Neilson, A. H. Proc. Phys. Soc. 1961, 78, 831−
837.
(28) Banyard, K. E.; Ellis, D. J. Mol. Phys. 1972, 24, 1291−1296.
(29) Banyard, K. E.; Reed, C. E. J. Phys. B 1978, 11, 2957−2967.
(30) Boyd, R. J.; Sarasola, C.; Ugalde, J. M. J. Phys. B 1988, 21,
2555−2561.
(31) Koga, T.; Matsuyama, H. Chem. Phys. Lett. 2003, 375, 565−570.
(32) Per, M. C.; Russo, S. P.; Snook, I. K. J. Chem. Phys. 2009, 130,
134103.
(33) Pearson, J. K.; Gill, P. M. W.; Ugalde, J.; Boyd, R. J. Mol. Phys.
2009, 107, 1089−1093.

(34) Loos, P. F.; Gill, P. M. W. Phys. Rev. A 2010, 81, 052510.
(35) Hollett, J. W.; McKemmish, L. K.; Gill, P. M. W. J. Chem. Phys.
2011, 134, 224103.
(36) Proud, A. J.; Pearson, J. K. J. Chem. Phys. 2010, 133, 134113.
(37) Proud, A. J.; Pearson, J. K. Chem. Phys. Lett. 2012, 519−520,
118−124.
(38) Gill, P. M. W.; O’Neill, D. P.; Besley, N. A. Theor. Chem. Acc.
2003, 109, 241−250.
(39) Koga, T. Chem. Phys. Lett. 2002, 363, 598−603.
(40) Bernard, Y. A.; Gill, P. M. W. New J. Phys. 2009, 11, 083015.
(41) Bernard, Y. A.; Loos, P. F.; Gill, P. M. W. In preparation.
(42) Gill, P. M. W.; Johnson, B. G.; Pople, J. A. Int. J. Quantum Chem.
1991, 40, 745−752.
(43) Gill, P. M. W. Adv. Quantum Chem. 1994, 25, 141−205.
(44) Hollett, J. W.; Kelly, A.; Poirier, R. A. J. Phys. Chem. A 2006,
110, 13884−13888.
(45) Gilbert, A. T. B.; Besley, N. A.; Gill, P. M. W. J. Phys. Chem. A
2008, 112, 13164−13171.
(46) Deng, J.; Gilbert, A. T. B.; Gill, P. M. W. Int. J. Quantum Chem.
2009, 109, 1915−1919.
(47) Shao, Y.; et al. Phys. Chem. Chem. Phys. 2006, 8, 3172−3191.
(48) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.;
Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.;
Su, S.; et al. J. Comput. Chem. 1993, 14, 1347−1363.
(49) Cann, N. M.; Boyd, R. J.; Thakkar, A. J. Int. J. Quantum Chem.
1993, 48, 1−14.
(50) Cann, N. M.; Boyd, R. J.; Thakkar, A. J. J. Chem. Phys. 1993, 98,
7132−7139.
(51) Cann, N. M.; Boyd, R. J.; Thakkar, A. J. Int. J. Quant. Chem.
Symp. 1993, 27, 33−42.
(52) Mercero, J. M.; Fowler, J. E.; Sarasola, C.; Ugalde, J. Phys. Rev. A
1999, 59, 4255−4258.
(53) Linderberg, J.; Shull, H. J. Mol. Spectrosc. 1960, 5, 1−16.
(54) Valderrama, E.; Mercero, J. M.; Ugalde, J. J. Phys. B 2001, 34,
275−283.
(55) Hollett, J. W.; Gill, P. M. W. J. Chem. Phys. 2011, 134, 114111.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct300218c | J. Chem. Theory Comput. 2012, 8, 1657−16621662


