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ABSTRACT: We show that, in the high-density limit, restricted Møller-Plesset (RMP)
perturbation theory yields E(2)

RMP = π−2(1 − ln 2) ln rs + O(r0
s ) for the correlation energy per

electron in the uniform electron gas, where rs is the Seitz radius. This contradicts an earlier
derivation which yielded E(2)

RMP = O(ln | ln rs|). The reason for the discrepancy is explained.
© 2011 Wiley Periodicals, Inc. Int J Quantum Chem 112: 1712–1716, 2012
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W e consider a paramagnetic system of N inter-
acting electrons confined in a cubic box, with

edges of length L and volume � = L3. We also
assume a uniform charge density background of
density equal in magnitude, but opposite in sign, to
the average electron density ρ = N/�. In the ther-
modynamic limit, both N and � tend to infinity in
such a way that the system becomes homogeneous
with a uniform density ρ, related to the Seitz radius
by the relation rs = (4πρ/3)−1/3 and is often called
jellium [1, 2].

It is convenient to consider a reduced Hamilton-
ian (i.e., one that is scaled by the number of electrons)
and, in atomic units, this is
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Ĥ = N−1[T̂ + Ĥe−e + Ĥe−b + Ĥb−b], (1)

where the operator

T̂ = −1
2

N∑
i=1

∇2
i (2)

corresponds to the kinetic energy of the electrons,
and

Ĥe−e =
N∑

i<j

1
|ri − rj| , (3)

Ĥe−b = −ρ

N∑
i=1

∫
dR

|ri − R| , (4)

Ĥb−b = ρ2

2

∫∫
dR1dR2

|R1 − R2| (5)
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represent the electron-electron, electron-background,
and background-background interactions, respec-
tively. In the thermodynamic limit, both Ĥb−b and
Ĥe−b diverge. However, the divergence is cancelled
by a term from Ĥe−e. See Ref. [1] for more details.
The term Ĥb−b is a known constant [3] and may be
ignored.

In perturbation theory [4], we introduce a parti-
tion

Ĥ = Ĥ(0) + V̂, (6)

where the perturbation V̂ is assumed small (in some
sense) compared with the zeroth-order Hamiltonian
Ĥ(0). This yields an expansion of the (reduced) energy

E = E(0) + E(1) + E(2) + . . . . (7)

The zeroth-, first-, and second-order energies are
given by

E(0,�) = 〈�(0,�)|Ĥ(0)|�(0,�)〉, (8)

E(1) = 〈�(0)|V̂|�(0)〉, (9)

E(2) =
∞∑

�=1

〈�(0,�)|V̂|�(0)〉2

E(0,�) − E(0)
, (10)

where E(0,0) ≡ E(0) and �(0,0) ≡ �(0), and the zeroth-
order ground state (� = 0) and excited states (� > 0)

wave functions satisfy

Ĥ(0)�(0,�) = E(0,�)�(0,�). (11)

There are many ways to partition Ĥ but not all are
equally effective. In this article, we will consider
three: the noninteracting (NI), restricted Møller–
Plesset [5] (RMP), and unrestricted Møller-Plesset
(UMP) partitions.

If we adopt the NI partition, we have

Ĥ(0)

NI = T̂, V̂NI = Ĥe−e + Ĥe−b. (12)

The zeroth-order wave functions �
(0,�)
NI are Slater

determinants of plane-wave orbitals

ψk(r) = 1
�

exp(i k · r), (13)

with orbital energies

εNI(k) = k2

2
. (14)

The �th excited determinant �
(0,�)
NI has the energy

E(0,�)
NI = 1

N

occ∑
k

εNI(k), (15)

where the sum over k takes into account all the
plane waves used to build �

(0,�)
NI , i.e., all the occu-

pied orbitals in the state �. For the special case � = 0,
all the orbitals up to the Fermi level are occupied.

Introducing α = (9π/4)1/3, one finds [6–8] that

E(0)

NI = 3
10

α2

r2
s

, E(1)

NI = − 3
4π

α

rs
, (16)

which are the kinetic and exchange energies, respec-
tively. The Coulomb part in E(1)

NI is exactly cancelled
by the positive uniform background via the term
Ĥe−b.

Unfortunately, although the correlation energy [9]

Ec = E − E(0) − E(1) (17)

of jellium is known [10] to be finite for any rs > 0,
the second-order energy Eq. (10) is infinite. However,
the leading-order contribution can be extracted from
Eq. (10) and, henceforth, we will use E(2) to refer to
that contribution.

After transforming into momentum space and
scaling the momenta by the wave vector kF = α/rs

so that the Fermi sphere has unit radius, one finds
[11, 12] that E(2)

NI consists of a direct (“ring-diagram”)
contribution

E(2,a)

NI = − 3
16π 5

∫∫∫
dq dk1 dk2

q4	εNI
, (18)

and an exchange contribution

E(2,b)

NI = 3
32π 5

∫∫∫
dq dk1 dk2

q2|q + k1 − k2|2	εNI
. (19)

In these integrals, the excitation vector q has the
domain

β < |q| < ∞, (20)

where β ∝ √
rs [13], and the occupied-orbital vectors

k1 and k2 have domains

|k1| < 1, |k1 + q| > 1, (21)

|k2| < 1, |k2 − q| > 1, (22)
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The lower bound for q in Eq. (20) is due to the
screening effect of the Coulomb field by the collec-
tive electron motions, and can be derived using the
plasma theory of the free-electron gas [13–17]. The
orbital energy difference is

	εNI

= εNI(|k1 + q|) + εNI(|k2 − q|) − εNI(k1) − εNI(k2).
(23)

The exchange term E(2,b)

NI is finite [18] and, for small
rs, is dominated by the ring-diagram term

E(2,a)

NI = 1 − ln 2
π 2

ln rs + O
(
r0

s

)
, (24)

which Macke showed [11] to depend logarithmi-
cally on rs. One may wonder, however, whether this
logarithmic term arises when the Hamiltonian is
partitioned differently [19].

If we adopt the RMP partition [20], we have

Ĥ(0)

RMP =
N∑

i=1

F̂(ri), V̂RMP = Ĥ −
N∑

i=1

F̂(ri), (25)

where the Fock operator defined by

F̂(r1)ψk1(r1)

= −1
2
∇2

1ψk1(r1) +
occ∑
k2

ψk2(r1)

∫
ψ∗

k2
(r2)ψk1(r2)

|r1 − r2| dr2

(26)

includes kinetic and exchange terms but not Hartree
terms because of their cancelation by the Ĥe−b term.

The RMP zeroth-order wave functions �
(0,�)
RMP are

again determinants of plane-wave orbitals (13), but
the orbital energies are now different and it can be
shown [21, 22] that

εRMP(k) = εNI(k) − rs

απ
εX(k). (27)

The additional term

εX(k) = 1 + 1 − k2

2k
ln

∣∣∣∣1 + k
1 − k

∣∣∣∣ (28)

arises from the exchange terms in Eq. (26). Thus,

�
(0,�)
RMP = �

(0,�)
NI , (29)

but

E(0,�)
RMP = 1

N

occ∑
k

εRMP(k) 	= E(0,�)
NI . (30)

The zeroth- and first-order energies are now given
by

E(0)

RMP = 3
10

α2

r2
s

− 3
2π

α

rs
, E(1)

RMP = 3
4π

α

rs
, (31)

and comparing Eqs. (16) and (31) reveals the impor-
tant relation

E(0)

NI + E(1)

NI = E(0)

RMP + E(1)

RMP = ERHF, (32)

where ERHF is the reduced RHF energy.
The ring-diagram contribution to E(2)

RMP is

E(2,a)

RMP = − 3
16π 5

∫∫∫
dq dk1 dk2

q4	εRMP
, (33)

which differs from Eq. (18) only by the denominator

	εRMP = 	εNI − rs

απ
	εX, (34)

where

	εX = εX(|k1 + q|) + εX(|k2 − q|) − εX(k1) − εX(k2).
(35)

The behavior of E(2,a)

RMP is dominated [22] by contri-
butions in the neighborhood of the Fermi sphere
(i.e., q ≈ 0). On the domains (21) and (22), we have

εRMP(k) = k2

2
− rs

απ

[
1 + 1 − k2

2k
ln

1 + k
1 − k

]
, (36)

and

εRMP(|k + q|) = |k + q|2
2

− rs

απ

[
1 + 1 − |k + q|2

2|k + q| ln
|k + q| + 1
|k + q| − 1

]
. (37)

Therefore, we have

	εRMP ≈ u + v − rs

απ

(
u ln

u
2

+ v ln
v
2

)
, (38)

where we have introduced

u = k1 · q
k1

, v = −k2 · q
k2

. (39)
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Substituting (38) into (33) and using the relations

dk1 = 2πk2
1 sin θ dθ dk1 ≈ 2π

q
du dk1, (40)

|k1 + q| > 1 ⇒ 1 − u ≤ k1 ≤ 1, (41)

(with similar expressions for k2) then yields

E(2,a)

RMP ≈ − 3
π 2

∫ 1

β

dq
q4

∫ q

0
du

∫ 1

1−u
dk1

∫ q

0
dv

×
∫ 1

1−v
dk2

1
u + v − rs

απ

(
u ln u

2 + v ln v
2

)

= − 3
π 2

∫ 1

β

dq
q4

∫ q

0
du

×
∫ q

0
dv

u v
u + v − rs

απ

(
u ln u

2 + v ln v
2

) . (42)

As the most important contribution comes from
small q, we have set the upper bound of the inte-
gral (42) to a convenient value of unity. Expanding
for small rs and integrating over q yields

E(2,a)

RMP ≈ − 3
π 2

∫ 1

β

dq
q4

∫ q

0
du

×
∫ q

0
dv

u v
u + v

[
1 + rs

απ

u ln u
2 + v ln v

2

u + v

]

= 1 − ln 2
π 2

ln rs + O
(
r0

s

)
, (43)

which is identical, in the high-density (i.e., small-
rs) limit, to E(2,a)

NI . The present result can also be
obtained from (42) by first switching to polar coor-
dinates (u = r cos θ and v = r sin θ ), integrating
over the radial part, carefully taking the rs → 0
limit, and finally performing the remaining angular
integration. The latter derivation rigorously justi-
fies the small-rs expansion. We thank the referee for
providing this alternative derivation.

In a similar investigation more than 20 years ago
[19], Handler claimed to show that

E(2,a)

RMP = O(ln | ln rs|), (44)

this claim, which implies that E(2)

RMP grows more
slowly with rs than E(2)

NI , obviously disagrees with our
result in Eq. (43). However, in his analog of Eq. (42),
Handler drops the u + v term and ignores the rs/απ

factor. Although it does not seem to alter Handler’s
derivation, the expressions reported in Ref. [19] for

εRMP(|k1 +q|) and εRMP(k1) are incorrect. The fact that
β ∝ √

rs means that Handler’s neglect of the u + v
term is incorrect.

It may be surprising that E(2)

RMP is the same as E(2)

NI ,
because Ĥ(0)

RMP seems a better starting point than Ĥ(0)

NI .
However, this is not the first time that the RHF treat-
ment of jellium has been disappointing. For example,
the RHF bandwidth, ε(1) − ε(0), is greater than the
NI bandwidth, which disagrees with experiments on
simple metals, where a small reduction is observed
[23, 24]. Moreover, the logarithmic dependence of
the eigenvalues (27) leads to a divergent derivative
of εRMP(k) at the surface of the Fermi sphere (k = 1)

and this leads to incorrect dependence of the elec-
tronic specific heat on temperature. Experimentally,
a linear dependence with a prefactor close to the NI
value is observed [25, 26].

One may hope that a different, and superior, per-
turbation series can be obtained by adopting the
UMP partition, that is, by using the UHF wave-
function of jellium as the starting point. After all,
as Overhauser showed long ago [27, 28], the RHF
solution of jellium is unstable with respect to a lower-
energy UHF solution, for all rs [29]. However, we
expect that there will be serious issues with the con-
vergence of the UMP perturbation series [30, 31] and
we have not considered this alternative in detail.

In conclusion, we have shown that the correla-
tion energy E(2)

RMP from RMP perturbation theory,
i.e., using a RHF starting point, is the same as the E(2)

NI
from conventional NI perturbation theory. Although
it is nearly impossible to test experimentally this
result, this corrects an earlier study which claimed
that E(2)

RMP is sublogarithmic.
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