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After introducing the electron correlation problem, we discuss a variety of
two-electron probability distributions (intracules), showing how these are
interrelated and how they can be constructed from the results of standard
molecular orbital calculations. We then consider how these intracules may
be used to estimate molecular correlation energies.

1. Introduction

1926 marked the beginning of a radically new chapter in the history of chemistry, for

the advent of the Schrödinger equation1 finally transformed chemistry into a

calculable science. The problem, of course, was the inordinate complexity of the

equation for all but the simplest of atomic and molecular systems and the discipline

of Quantum Chemistry may be usefully characterised as the development and

application of methods for reducing that complexity to tractable levels.

Soon after Schrödinger’s seminal publications, Hartree recognized that most of

the difficulties associated with the Schrödinger equation for a general many-electron

system can be avoided if its wavefunction is approximated by a product

C(r1,r2,. . .,rn) = f1(r1)f2(r2). . .fn(rn) (1)

of molecular orbitals (MOs).2 It is easy to show that such wavefunctions imply

statistically independent motion of the electrons and, although interelectronic

repulsion makes this an implausible assumption, it turns out to be satisfactory for

many qualitative purposes. Shortly thereafter, both Slater3 and Fock4 pointed out

that Hartree’s wavefunction fails to satisfy the Pauli Principle,5 but that this can be

rectified by the antisymmetrization of (1) to form a determinant.

Unfortunately, although a well-defined and practicable scheme, the resulting

Hartree-Fock (HF) model completely neglects the statistical correlation between

the motions of opposite-spin electrons and these were found to be essential for a

quantitative treatment of such chemically important phenomena as bond making

and breaking. In the homolytic fission of a single bond, for example, the two

formerly paired electrons migrate in opposite directions and it is well known that this

cannot be correctly described by a single determinant.
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The difference between a molecule’s HF energy and its exact energy is the

correlation energy Ec and the challenge of calculating it is known as the ‘‘electron

correlation problem’’. Historically, approaches have fallen into two broad classes.

Wavefunction-based methods construct an improved wavefunction by linearly

combining ‘‘substituted’’ determinants (in which previously empty orbitals become

occupied) with the HF determinant. Such methods are guaranteed eventually to

approach the exact solution of the Schrödinger equation, but their convergence is

slow because a linear combination of determinants struggles to approximate the

interelectronic cusps in the true wavefunction.6 As a consequence, wavefunction-

based methods are feasible (on the desktop computers of 2011) only for systems with

a few dozen non-hydrogen atoms.

Density-based methods are a popular low-cost alternative. They are based upon

the Hohenberg-Kohn theorem,7 which states that the energy of the ground state of a

system is a universal functional of its electron density r(r). Unfortunately, the

theorem is non-constructive and, despite the efforts of many researchers over many

years, the form of the functional remains unknown. Many approximate functionals

have been devised, each with its own strengths and weaknesses, but none yet has

proven accurate for all types of chemical problem. The major systematic weaknesses8

of density functional theory (DFT) stem from its inability to deal with intrinsically

two-electron phenomena such as bond cleavage and static correlation.

Between the complexity of wavefunction schemes (which depend explicitly on the

coordinates of every electron) and the simplicity of density schemes (which depend

only on the one-electron density), one can perceive an intermediate regime wherein

two-electron information becomes the key ingredient. This idea, which springs

naturally from the observation that the Schrödinger equation contains only one-

and two-body terms, is the avenue explored in this article. Atomic units are used

throughout.

2. Intracules

2.1 The Position intracule

A plausible starting point for the development of a two-electron analogue of DFT is

the two-electron density

r2(r1,r2) =
R
|C(r1,. . .,rn)|

2dr3. . .drn (2)

which gives the joint probability of finding one electron at r1 and another at r2. How

might one extract the correlation energy from this function of six variables?

Intuitively, one may expect the statistical correlation between the motions of two

electrons to depend strongly on their separation r12 = |r1 � r2| and this leads

naturally to the position intracule9

P(u) =
R
r2(r1,r2)d(r12 � u)dr1dr2 (3)

(where d is the Dirac delta distribution) which gives the probability density of finding

two electrons separated by a distance u.

Unfortunately, although it is straightforward10 to compute P(u), it turns out that

this is not a effective starting point for a simple electron correlation model. This can

be demonstrated by considering the two-electron helium-like ions (i.e. H�, He,

Li+,. . .), which are parameterized by the nuclear charge Z. It is known11,12 that, as

Z increases, the correlation energy Ec = Eexact � EHF approaches a limiting value

(�46.66 mEh). Similar behaviour is found in other two-electron systems13,14 and,
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indeed, Loos has proven that their correlation energies always approach a limiting

value as they are compressed toward the high-density limit.15 In sharp contrast, as

Z increases, the position intracule P(u) approaches d(u) (see section 4), indicating

that P(u) does not possess the qualitative behaviour required to capture Ec in these

simple systems.

2.2 The momentum intracule

Several years ago, Rassolov argued that the relative momentum p12 = |p1 � p2| of

two electrons also plays a role in their correlation.16 This undoubtedly makes sense

in a classical picture, where a high relative velocity would reduce the interaction time

for a pair of electrons, but it is less intuitively obvious in a quantum mechanical

setting.

The Fourier transform of |C(r1,. . .,rn)| is the momentum wavefunction

F(p1,. . .,pn) = (2p)�3n/2
R
C(r1,. . .,rn)e

�i(p1�r1+� � �+pn�rn)dr1. . .drn (4)

which can be integrated to produce the two-electron momentum density

p2(p1,p2) =
R
|F(p1,. . .,pn)|

2dp3. . .dpn (5)

and integrated further to yield the momentum intracule17,18

M(v) =
R
P2(p1,p2)d(p12 � v)dp1dp2 (6)

Unfortunately, although it is straightforward19 to compute M(v), it turns out that,

like P(u), it is an ineffective starting point for a simple electron correlation model. As

before, this can be illustrated by the helium-like ions (see section 4), whose M(v)

become flatter and flatter as Z increases.

The position and momentum intracules of the helium-like ions become infinitely

sharp and infinitely flat, respectively, in the Z - N limit. As a result, neither

appears to be a natural ingredient for the two-electron DFT analogue that we seek.

However, one might speculate that the correlation in these ions could be modelled

via a product variable involving both r12 and p12. In order to explore this possibility,

we must move into phase space and attempt to utilise both the relative position and

relative momentum of the electrons.

2.3 Phase-space quasi-intracules

The reader may well view the goal of this subsection as hopeless because, although

one can form a momentum-space wavefunction from its position-space counterpart

using a Fourier transform, the Uncertainty Principle forbids the construction of a

phase-space wavefunction. Likewise, although r2(r1,r2) and p2(p1,p2) can be easily

obtained, there exists no comparable joint probability density P(r1,r2,p1,p2).

Nevertheless, though a genuine density in phase-space is prohibited, it is possible

to concoct quasi-densities with some of the properties that the genuine article would

possess. The most famous of these are the Wigner quasi-density20

Wn(r1,. . .,rn,p1,. . .,pn) = p�3n
R
C(r1 + q1,. . .,rn + qn)*

� C(r1 � q1,. . .,rn � qn)e
2i(p1�q1+� � �+pn�qn)dq1. . .dqn (7)

and the Husimi quasi-density21,22 We will confine our attention to the former.

Being a function of 6n coordinates, the Wigner quasi-density is even more

complicated than the wavefunction. However, because we are primarily interested
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in two-electron information, it is natural to integrate over all but two of the electrons

and to use instead the second-order reduced Wigner quasi-density

W2(r1,r2,p1,p2) = p�6
R
r2(r1 + q1,r2 + q2,r1 � q1,r2 � q2)

� e2i(p1�q1+� � �+p2�q2)dq1. . .dq2 (8)

where r2 is the reduced second-order density matrix.23

W2 is a simpler object than Wn but it is nonetheless a function of 12 variables and

it is desirable to extract from it only the information that is relevant to our

correlation model. Because it contains information about the relative position r12
and momentum p12 vectors, it also gives insight into the angle y12 between them, and

this, in turn, reveals the nature of the electrons’ mutual orbit (Fig. 1).

Following the pattern of eqn (3) and (6), we can extract the joint quasi-density for

r12, p12 and y12, and we call this the Omega quasi-intracule24

Oðu; v;oÞ ¼
Z

W2ðr1; r2; p1; p2Þdðr12 � uÞdðp12 � vÞdðy12 � oÞdr1dr2dp1dp2

¼ 1

8p3

Z
r2ðr; rþ qþ u; rþ q; rþ uÞeiv�qdðyuv � oÞdrdqdXudXv

ð9Þ

Here, u and v are vectors of length u and v, and yuv is the angle between them.

Because the Wigner quasi-density is not a bona fide probability density,20 the

Omega quasi-intracule is similarly afflicted. Nonetheless, following Wigner, we will

often ignore this inconvenient truth.

2.4 Lower (quasi-)intracules

The Omega quasi-intracule is the antecedent of a family (Fig. 2) of lower-

dimensional intracules, each of which is obtained by appropriate integration, viz.

(Wigner25) W(u,v) =
R p
0O(u,v,o)do (10)

(Lambda24) L(s,o) =
R
N

0 O(u,s/u,o)u�1du (11)

(Position9) P(u) =
R
N

0 W(u,v)dv (12)

(Momentum17) M(v) =
R
N

0 W(u,v)du (13)

(Angle24) U(o) =
R
N

0 L(s,o)ds (14)

(Action25) A(s) =
R p
0L(s,o)do (15)

(Dot24) D(x) =
R
N

x L(s,o)(s sin o)�1ds (16)

where we have introduced the new product variables s = r12p12 and x = r12�p12,
which have dimensions of angular momentum and units of Planck’s constant �h.

Fig. 1 Physical interpretation of the dynamical angle y12.
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Most of the descendants of O(u,v,o) are quasi-intracules but we see that the

genuine intracules, P(u) and M(v), also emerge as its offspring.

2.5 The Dot quasi-intracule

Two years after the introduction24 of the Dot intracule, Bernard and Crittenden

showed26 that it is mathematically equivalent, but much simpler, to find the dot

intracule as the Fourier transform

DðxÞ ¼ 1

2p

Z 1
�1

D̂ðkÞ expðikxÞdk ð17Þ

of the two-particle autocorrelation function

D̂(k) =
R
r2(r,r + (1 + k)u, r + ku, r + u)drdu (18)

In this way, the Dot intracule is formed directly from the second-order density

matrix, without the need to use the Wigner quasi-density (8) as an intermediate. Of

course, it is still a quasi-intracule and is not guaranteed to be non-negative.

2.6 The Posmom intracule

Following his work on the Dot intracule, Bernard showed that the ‘‘posmom’’ s= r�p
of a quantum mechanical particle is an observable whose probability density S(s) can

be computed relatively easily from its position wavefunction.27 Subsequently, he

computed S(s) for a variety of atomic systems28 and proposed that posmometry is a

potentially valuable new spectroscopic technique.29

Recently, we have shown30 that x = r12�p12 is also a quantum mechanical

observable with a probability density that can be found as the Fourier transform

XðxÞ ¼ 1

2p

Z 1
�1

X̂ðkÞ expðikxÞdk ð19Þ

of the two-particle hyperbolic autocorrelation function

X̂(k) =
R
r2(r,r + exp(k)u, r + sinh(k)u, r + cosh(k)u)drdu (20)

It is interesting to compare the true intracule X(x) with the quasi-intracule D(x)

derived from the Wigner density. The comparison is easy in Fourier space and, by

comparing eqn (18) and (20), one sees that D̂(k) is a small-k approximation to X̂(k),

Fig. 2 Genealogical relationships between intracules derived from the Wigner density.
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and the difference between them is O(�h2). As we will see in Section 4, this apparently

small difference is significant.

3. Introduction of a basis

If we expand the MOs in a basis set {fi}, the second-order density matrix is

r2ðr1; r2; r01; r02Þ ¼
X
abcd

Gabcdfaðr1Þfbðr2Þfcðr01Þfdðr02Þ ð21Þ

where the Gabcd are two-particle density matrix (2PDM) elements. Thus, from

eqn (9), the Omega intracule is

Oðu; v;oÞ ¼
X
abcd

Gabcd ½abcd�O ð22Þ

where the Omega integrals are

½abcd�O ¼
1

8p3

Z
faðrÞfbðrþ qþ uÞfcðrþ qÞfdðrþ uÞ

� eiv�qdðyuv � oÞdrdqdXudXv

ð23Þ

If the fi are s Gaussians centred at A, B, C, D, with exponents a, b, g, d, it can be

shown31 that

½ssss�O ¼ K expð�RÞ 1
p

Z p

0

i0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ y cos t
p

Þdt ð24Þ

where

K ¼ p2u2v2 sino

ðaþ dÞ3=2ðbþ gÞ3=2
expð�l2u2 � m2v2 � iZuv cosoÞ ð25Þ

R ¼ ad
aþ d

jA�Dj2 þ bg
bþ g

jB� Cj2 ð26Þ

x = (Pu)2+(iQv)2+2(Pu)(iQv)cos w cos o (27)

y = 2(Pu)(iQv)sin w sin o (28)

and

l2 ¼ ad
aþ d

þ bg
bþ g

ð29Þ

4m2 ¼ 1

aþ d
þ 1

bþ g
ð30Þ

Z ¼ a
aþ d

� b
bþ g

ð31Þ

P ¼ 2ad
aþ d

ðA�DÞ þ 2bg
bþ g

ðB � CÞ ð32Þ

Q ¼ aAþ dD

aþ d
� bB þ gC

bþ g
ð33Þ

P�Q = PQ cos w (34)
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and i0(z) = z�1 sinh z. The integral in (24) can be evaluated by quadrature or series

expansion.31 However, if the Gaussian centres are collinear, it can be found in closed

form and, if they are concentric, it reduces to

[ssss]O = K (35)

Integrals over p,d,. . . Gaussians can be found by Boys differentiation32 of the [ssss]O
integral. However, Hollett has very recently constructed an 18-term recurrence

relation19 to generate such integrals more efficiently.

4. Intracules in He-like ions

If we model the 1s orbital in a He-like ion by the single Gaussian exp(�ar2), the HF

position and momentum wavefunctions are

C(r1,r2) = 2(ap)3/2 exp[�a(r21 + r22)] (36)

F(p1,p2) = (2pa)�3/2 exp[�(p21 + p22)/4a] (37)

and the reduced second-order density matrix is

r2ðr1; r2; r01; r02Þ ¼ ð2a=pÞ
3 exp½�aðr21 þ r22 þ r0

2
1 þ r0

2
2Þ� ð38Þ

Using (9), one finds that the Omega intracule is

O(u,v,o) = (1/p)u2 exp(�au2)v2 exp(�v2/4a)sin o (39)

and eqn (10)–(20) then yield

W(u,v) = (2/p)u2 exp(�au2)v2 exp(�v2/4a) (40)

L(s,o) = (1/p)s2K0(s)sin o (41)

P(u) = (a/p)3/24pu2 exp(�au2) (42)

M(v) = (4pa)�3/24pv2 exp(�v2/4a) (43)

U(o) = (1/2)sin o (44)

A(s) = (2/p)s2K0(s) (45)

D(x) = (1/p)xK1(x) (46)

X(x) = (2p3)�1/2|G[(3 + ix)/4]|2 (47)

where Kn is a modified Bessel function of the second kind and G is the gamma

function.33

The exponent that minimizes the HF energy of the He atom is

a0 ¼
33� 8

ffiffiffi
2
p

9p
ð48Þ

and using this yields the position and momentum intracules shown in Fig. 3.

P(u) is a Maxwell distribution whose maximum occurs at u ¼ 1=
ffiffiffi
a
p

. Thus, as the

exponent a increases and the orbital shrinks, the probability of small interelectronic

distances increases, and the intracule contracts toward the origin.

M(v) is also a Maxwell distribution whose maximum occurs at v ¼ 2
ffiffiffi
a
p

. Thus, as

the exponent a increases and the orbital shrinks, the probability of high relative

momenta increases, and the intracule broadens away from the origin.
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U(o) is trivial in this system and reflects the ‘‘Jacobian’’ effect that, as r12 and p12
range independently over their respective domains, the angle y12 between them is

close to p/2 much more often than it is close to 0 or p.
In these simple systems, the multidimensional intracules are simple products

of the one-dimensional ones and we therefore find O(u,v,o) � P(u)M(v)U(o),
W(u,v) � P(u)M(v) and L(s,o) � A(s)U(o). Such products imply that u, v and o
are statistically independent in these systems. This is highly exceptional.

The four one-dimensional intracules, Y(o), A(s), D(x) and X(x) are all independent

of the exponent a and the plots in Fig. 4 and 5 therefore apply, not only to the helium

atom, but to any helium-like ion. Their invariance to dilation suggests that, unlike

P(u) and M(v), these intracules may naturally yield correlation models that behave

correctly for two electrons in the high-density limit (see section 2.1). We will return

to this in section 5.

A(s) appears Maxwellian but is not, decaying only exponentially at large s.

Like P(u) and M(v), it possesses a single maximum and this occurs at s E 1.55

Fig. 3 Position intracule (left) and momentum intracule (right) for the helium atom.

Fig. 4 Angle intracule (left) and action intracule (right) for the helium-like ions.

Fig. 5 Dot intracule (left) and posmom intracule (right) for the helium-like ions.

D
ow

nl
oa

de
d 

by
 A

us
tr

al
ia

n 
N

at
io

na
l U

ni
ve

rs
ity

 o
n 

06
 J

un
e 

20
11

Pu
bl

is
he

d 
on

 0
5 

A
pr

il 
20

11
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
1P

C
90

00
8K

View Online

http://dx.doi.org/10.1039/c1pc90008k


Annu. Rep. Prog. Chem., Sect. C, 2011, 107, 229–241 237

This journal is © The Royal Society of Chemistry 2011

(the root of 2K0(s) = sK1(s)), implying that this is the most likely value of r12p12.

It also has a weak logarithmic singularity at s = 0.

D(x) is a bell curve with infinite curvature at x = 0 and inflection points at

x E �0.595 (the root of K0(x) = xK1(x)). The variance of D(x) is sD
2 = 3 and, for

large x, one finds D(x) = O(x1/2e�x).

X(x) is a bell curve, confirming that the most likely value of r12�p12 is zero, i.e. the
vectors are orthogonal. However, with points of inflection at x E �1.61, a variance

s2X = 6, and a large-x decay X(x) = O(x1/2e�px/4), it is clear the true intracule is

much broader than the quasi-intracule.

The comparison between X(x) and D(x) is sobering: the Wigner quasi-density (8)

is a convenient source of phase-space information, but it is not quantitatively reliable

and should be eschewed whenever a rigorous alternative is available.

5. Electron correlation models

The Omega intracule for a molecular system offers an impressively detailed picture

of the dynamical behaviour of its electrons. We know, for any given values of u,

v and o, the quasi-probability of finding two of its electrons at a distance u, moving

with a relative speed v at a dynamical angle o. In addition, the posmom intracule

X(x) reveals the true distribution of the posmom variable x = r12�p12. Can we use

this information to construct an electron correlation model?

DFT methods are founded on the Hohenberg-Kohn theorem,7 which states that

the correlation energy Ec is a functional of the one-electron density r(r). We now

make an analogous conjecture:24 that the correlation energy is a functional of the

Omega intracule, i.e.

Ec = F[O(u,v,o)] (49)

There are probably many possible ways to prove (or disprove) the conjecture and

this remains an interesting open challenge. Our earliest attempts sought to show that

the Hamiltonian can be reconstructed (apart from unimportant translations and

rotations) from O(u,v,o). If this can be shown, it proves the conjecture, for Ec is

certainly a functional of the Hamiltonian. However, even in the absence of a proof,

we feel that the correlation-relevant information in the Omega intracule is much

more accessible than that in the one-electron density and, therefore, it should be

easier to recover Ec from O(u,v,o) than from r(r). We call such schemes Intracule

Functional Models.

Although one can imagine many ways to extract Ec from O(u,v,o), one of the

simplest is to contract the intracule with an appropriate kernel, writing

Ec =
R
N

0

R
N

0

R p
0O(u,v,o)G(u,v,o)dodvdu (50)

In such a formulation, the correlation kernel G(u,v,o) is a weight function that

assigns high priority to regions of (u,v,o)-space where the electrons are strongly

correlated, and low priority to regions where correlation is weak. As Fig. 6 shows,

in situations where both u and v are small, the electrons are close together and

moving relatively slowly and so we expect a large correlation contribution.

Conversely, correlation effects should be small when the electrons are far apart

and moving quickly. In intermediate cases, where one of u and v is large and the

other is small, we expect moderate correlation effects. This picture is also consistent

with the suggestion (section 2.1) that correlation in the helium-like ions is related to

the product r12p12.
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If we expand the MOs in a basis, then eqn (22) and (50) yield

Ec ¼
X
abcd

Gabcd ½abcd�G ð51Þ

and one finds that the fundamental Gaussian correlation integral34 is given by

½ssss�G ¼
1

8ðaþ dÞ3=2ðbþ gÞ3=2

�
Z

expð�l2u2 � m2v2 � iZu � v

� P � u� iQ � v� RÞGðu; v;oÞdudv

ð52Þ

Of the many kernels that we have explored, the four-parameter kernel35

G4(u,v,o) = c exp(�l20u2 � m20v
2 � iZ0uv cos o) (53)

is particularly attractive because it leads to correlation integrals that can be found in

closed form. For example,

½ssss�G ¼ c
p3

ðaþ dÞ3=2ðbþ gÞ3=2ð4l2m2 þ h2Þ3=2

� exp
m2P2 þ hPQ cos w� l2Q2

4l2m2 þ h2
� R

� � ð54Þ

where l2 = l2 + l20, m
2 = m2 + m20 and h = Z + Z0.

A recent study36 by Pearson and Crittenden revealed that intracules tend to be

fairly insensitive to basis set improvements. For this reason, and because the main

focus of this article is conceptual rather than quantitative, the numerical results

below use two-particle density matrices Gabcd from UHF/6-311G wavefunctions.

Optimization of the c, l0, m0 and Z0 parameters in the G4 kernel against the exact

correlation energies37 of the ground states of the first 18 atoms38,39 and the 56 small

molecules in Pople’s G1 data set40 reveals that, whereas Z0 plays a critical role in

capturing Ec in these systems, m0 is unimportant and can be set to zero without

affecting the results significantly.

Fig. 6 Strongly, moderately and weakly correlated arrangements of two electrons.
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Accordingly, we optimized and explored the three-parameter kernel

G3(u,v,o) = c exp(�l20u2 � iZ0uv cos o) (55)

(c = 0.2113, Z0 = 1.0374, l0 = 0.5578) and the two-parameter kernel

G2(u,v,o) = c exp(�iZ0uv cos o) (56)

(c = 0.07695 and Z0 = 0.8474).

Fig. 7 and 8 plot the correlation energies predicted by the G2 and G3 kernels

(denoted E2
c and E3

c, respectively) against the exact correlation energies of the 18 atoms

and 56 molecules described above.

Fig. 7 Accuracy of correlation energies from the G2 kernel for atoms and molecules.

Fig. 8 Accuracy of correlation energies from the G3 kernel for atoms and molecules.
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The first thing that one learns from these scatterplots is that these simple kernels

are surprisingly successful at capturing the principal correlation effects in these

74 systems. It is particularly encouraging to find that the G2 kernel—which is simply

an exponential in x = r12�p12—performs so well. On closer inspection, we see that

the G2 kernel tends to overestimate Ec in s-bonded molecules such as CH4 and

Si2H6 and to underestimate in p-bonded molecules such as N2 and HCCH. The

overestimation in the s-bonded systems is substantially reduced by the G3 kernel,

whose extra exp(�l20u2) factor decreases the predicted correlation energies in

spatially extended systems. However, even the G3 kernel still underestimates Ec in

compact, p-bonded molecules.

Why are the unsaturated molecules problematic? It appears that it is because a

significant fraction of Ec in these systems is ‘‘static’’, rather than ‘‘dynamic’’, in

nature. Though precise definitions are elusive,41 static correlation is associated with

the presence of low-lying excited states and the resulting inadequacy of a single

determinant wavefunction, whereas dynamic correlation results from the intricate

dance of the electrons as they strive to avoid close encounters with one another.

Evidently, our G2 and G3 correlation models are effective at modelling dynamical

correlation but struggle to capture the static component. Future work to address this

shortcoming will be important.41

6. Conclusions

There is a fertile, but largely unexplored, middle ground between the simplicity of

DFT and the complexity of many-electron wavefunction theories. In this region,

inexpensive uncorrelated calculations are used to construct explicit two-electron

probability density functions called intracules and the latter are then used to estimate

correlation energies. We have described the construction of nine distinct intracules

and have discussed some of the possible ways in which these may be used. Such

intracule functional models, although still in their infancy, appear to have a bright

future.
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