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We propose a density functional perturbative scheme to approximate the energy of a high-level

DFT calculation at a significantly reduced cost. Our approach involves performing a primary

SCF calculation using a crude functional, basis set and quadrature grid, followed by a single step

using a more sophisticated secondary functional, basis and grid. Unlike the earlier dual-level DFT

approach of Nakajima and Hirao, we use Roothaan diagonalization instead of perturbation

theory to incorporate the effects of the secondary basis set. We show that energies at the popular

B3LYP/6-311+G(3df,2p)/(75,302) level can be accurately estimated from primary calculations at

the relatively economical BLYP/6-31G(d)/SG-0 level.

1. Introduction

Density functional theory (DFT)1,2 has a number of advantages

over traditional wavefunction-based methods: it is concep-

tually simpler, more easily implemented, and usually less

computationally demanding. Moreover, DFT often accounts

well for energetic, structural and vibrational properties of

molecules and, for this reason, it has become a useful tool

for experimental chemists of all types. Its accuracy, however,

depends critically on the exchange–correlation (XC) func-

tional, basis set and quadrature grid and, as a general rule,

greater accuracy incurs a greater computational cost. As

interest in large biochemical systems grows, it is important

to develop methods that boast both high accuracy and

low cost.

DFT calculations using pure (local or gradient-corrected)

functionals with small basis sets and small grids are compu-

tationally inexpensive. Such calculations require only the

Coulomb contributions to the Kohn–Sham matrix and these

can be evaluated in O(n2) cost (where n is the basis set size)

using efficient two-electron integral methods3,4 and, even more

cheaply, by using modern algorithms such as the Continuous

Fast Multipole Method (CFMM),5 KWIK6 and the Fourier

Transform Coulomb (FTC) method.7,8 The most time-

consuming step in an efficiently implemented pure DFT calcu-

lation is then the evaluation of the various XC contributions,8

the cost of which scales with the size of the quadrature grid.

Although inexpensive, pure DFT calculations lack the

accuracy of those that use hybrid functionals (i.e. those that

include a fraction of exact Fock exchange). If combined with a

large basis set and quadrature grid, hybrid DFT can often

produce results that are in very good agreement with experi-

ment but, unfortunately, the inclusion of exact exchange

introduces non-locality into the XC potential and precludes

the use of fast techniques such as the CFMM. This means

that calculations using hybrid functionals are significantly

slower than those using pure functionals, a weakness that

has restricted their application to relatively small systems.

In this Paper, we propose Density Functional Perturbation

Corrections (DFPC) which can be exploited to combine the

low cost of pure DFT calculations using small bases and grids

with the high accuracy of hybrid DFT calculations using large

bases and grids. Our method is motivated by the dual-level

DFT method of Nakajima and Hirao9 and the dual grid

scheme of Tozer et al.10 We combine these with dual basis

ideas11–19 to obtain a triple perturbation in the functional,

basis and grid dimensions.

2. Theory

DFPC embraces a family of perturbative corrections that can

be applied after a self-consistent KS calculation. It provides a

general framework for dual-level DFT calculations that allows

jumping in the functional, basis and grid dimensions. Before

considering the general case we will outline a dual-basis DFT

calculation using the HFPC18,19 scheme and, in doing so,

introduce our notation.

In practice, DFT calculations are performed in a finite basis

of n functions {wm} using a variational formalism.20 When

converged, this yields a density matrix, P, and corresponding

density

r ¼
X
mn

Pmnwmwn ð1Þ

This density gives rise to the coulomb potential

VJ ¼
Z

rðr0Þ
jr� r0j dr

0 ð2Þ

and, along with the XC energy functional

Exc[r] =
R
r(r)exc[r] dr (3)

the XC potential

vxc ¼ exc½r� þ r
dexc½r�
dr

ð4Þ

where exc is the XC energy density. These potentials can be

used to build a KS matrix in a larger secondary basis of N

functions {wa}

Fab = Hcore
ab + Jab + Fxc

ab[vxc] (5)
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where Hcore
ab is the core Hamiltonian matrix in the secondary

basis, and

Jab = hwa|VJ|wbi (6)

Fxc
ab[vxc] = hwa|vxc|wbi (7)

The integrals that arise in (7) cannot usually be evaluated in

closed form and, therefore, quadrature must be used. We can

write the quadrature-dependent XC matrix as

Fxc
ab ½vxc;G� ¼

X
i2G

wiwaðriÞvxcðriÞwbðriÞ ð8Þ

where ri and wi are the roots and weights associated with the

quadrature grid G. It follows that the KS matrix is also

dependent on both the functional and grid, and we can

make this dependence explicit by writing Fab[vxc, G]. This

new KS matrix can be diagonalised once to yield an updated

(but non-self-consistent) density matrix, P̃, and corresponding

density

~r ¼
X
ab

~Pabwawb ð9Þ

Clearly, ~r depends on both the functional and grid used in the

KS matrix formation and, where necessary, this dependence

can be made explicit by writing ~r[vxc, G]. For functionals

within the generalised gradient approximation (GGA), the

total electronic energy can be evaluated via

E½~r; vxc;G� ¼
XN
ab

~PabH
core
ab þ

1

2

XN
abcd

~Pab
~PcdðabjcdÞ

þ
X
i2G

wi~rðriÞexcðriÞ
ð10Þ

Similar expressions exist for hybrid and meta-GGA functionals.

This expression is analogous to the dual-basis energy using the

HFPC[1]18 scheme and we note that, unlike other dual-basis

schemes, it includes contributions that are quadratic in the

updated density matrix P̃.

We are now in a position to be able to define the DFPC

energy in its most general form, that is, we allow for changes in

the functional, basis and grid. Conceptually, this can be

viewed as a ‘‘triple jump’’ across the diagonal of a cube, as

shown in Fig. 1. Within this framework several other cases

which traverse different edges of this cube can also be defined.

We denote the primary functional and grid used in the SCF

calculation by vPxc and GP and the secondary functional and

grid used in the final energy evaluation by vSxc and GS. If we

vary only the basis, then vPxc = vSxc = vxc and GP = GS = G

and we obtain our dual-basis energy

EDB = E[~r[vxc, G], vxc, G] (11)

If we vary only the functional, then {wa}= {wm} andG
P=GS=G

and we obtain the dual-functional energy

EDF(A) = E[r, vSxc, G] (12)

EDF(B) = E[~r[vSxc, G], v
S
xc, G] (13)

The dual-functional energy comes in two flavours, DF(A) and

DF(B), which differ in whether or not the KS matrix is rebuilt

using the secondary functional.

If we vary only the grid, then {wa} = {wm} and vPxc = vSxc = vxc
and we obtain the dual-grid energy

EDG(A) = E[r, vxc, G
S] (14)

EDG(B) = E[~r[vxc, G
S], vxc, G

S] (15)

As in the dual-functional case, the dual-grid energy also comes

in two flavours depending on whether or not the KS matrix is

rebuilt before the energy evaluation.

We now consider varying two of our three quantities. These

levels of theory traverse two edges of the cube in Fig. 1 and we

will refer to these as ‘‘double jump’’ methods.

EDFDB = E[~r[vSxc, G], v
S
xc, G] (16)

EDBDG = E[~r[vSxc, G
P], vSxc, G

S] (17)

EDFDG = E[~r[vSxc, G
P], vSxc, G

S] (18)

For reasons that will become clear later, when we jump in

multiple dimensions we always use vSxc and GP when building

the KS matrix.

Finally, we can consider changing all three quantities to

obtain the DFPC energy

EDFPC = E[~r[vSxc, G
P], vSxc, G

S] (19)

It is worth emphasizing that ~r is expressed in the primary basis

in (18), but in the secondary basis in (19).

A DFPC calculation is completely defined by six variables

and we propose the notation

{XP, XS}/{BP, BS}/{GP, GS}

where X, B and G refer to the XC functional, the basis set and

the grid, respectively, and the superscripts P and S distinguish

between the primary and secondary levels.

3. Results and discussion

To test the efficacy of our approach, we chose the popular

B3LYP/6-311+G(3df, 2p)/(75,302) model as our secondary

level and all of the errors discussed below are measured

relative to this benchmark. Here, and elsewhere in the paper,

Fig. 1 Density functional perturbation corrections (DFPC) can be

viewed as moving along the edges of a cube whose directions represent

the functional, basis and grid.
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we use (Nr, NO) to denote the molecular quadrature scheme21

that pairs the Nr-point Euler–Maclaurin radial grid22 with the

NO-point Lebedev angular grid23 and we note that a pruned

(75,302) is the ‘‘Fine Grid’’ in the Gaussian 09 package.24

All molecular structures were optimized at the B3LYP/

6-31G(2df,p)/SG-1 level. Incremental DFT25 was switched

off, and all SCF calculations were converged to a DIIS error

of 10�7. All calculations were performed using a development

version of the Q-Chem 4.0 quantum chemistry package.26

Several primary levels (functional, basis set and grid) were

explored, and each was applied to the 257 neutral molecules in

the G3 dataset.27 To assess each primary level, we found its

mean absolute error, maximum absolute error, worst case

molecule, and number of outliers (NO), relative to the bench-

mark energies. (An outlier is a molecule whose absolute error

exceeds 4 kJ/mol.) These statistics are collected in Table 1.

3.1 Functional jumping

We begin our DFPC exploration by studying cases in which

the primary and secondary levels differ only in the functional.

Three primary functionals were investigated: SVWN,28,29

BLYP30,31 and EDF1.32 Their mean errors relative to B3LYP

range from 5424 kJ/mol for SVWN to 112 kJ/mol for EDF1.

Although these are large, there is usually significant cancella-

tion when considering chemical reactions. Our purpose in

showing them here is to demonstrate that the dual functional

schemes are able to remove almost all of these errors.

The simple DF(A) scheme produces huge improvements, the

BLYP mean error, for example, drops from 168 to 5.9 kJ/mol

but, unfortunately, the number of outliers (178 for BLYP) is

still unacceptably large for chemical purposes. The DF(B)

scheme, however, is several times more accurate, reducing

the BLYP mean error to just 0.4 kJ/mol and removing all

the outliers. The DF(B) errors for the SVWN functional are

still large and we therefore do not recommend using a local

density functional if the target secondary functional is a

hybrid.

Dual functional schemes with gradient-corrected primary

functionals seem promising. The two functionals considered

here are comparable; EDF1 slightly outperforms BLYP for

the DF(A) scheme and vice versa for DF(B). These results

suggest that dual functional approaches are insensitive to the

choice of gradient-corrected functional in the primary

calculation.

3.2 Basis jumping

Next, we turn to cases in which the primary and secondary

levels differ only in the basis set.

Three primary basis sets were investigated: 6-31G, 6-31G(d)

and 6-311G(d). Their mean errors relative to 6-311+G(3df, 2p)

range from 402 to 78 kJ/mol and almost all of their errors

exceed 4 kJ/mol. Our dual-basis perturbative approach signifi-

cantly reduces these errors, the mean falling to 26 kJ/mol for

6-31G and below 2 kJ/mol for the polarized basis sets. It is

interesting to contrast the performances of the 6-31G(d) and

6-311G(d) bases. Although the former has fewer functions and

a much larger primary mean error, it yields superior DFPC

energies. This unexpected result is also seen in the HFPC

method19 and recalls the claim by Schaefer and Grev33 that the

quality of the 6-311G basis is questionable.

There is a significant improvement in the DB energies when

polarization functions are included in the primary basis. These

functions are required to model the orbitals adequately in

hypervalent molecules such as PCl5, PF5 and SF6, which

consistently feature among the outliers. Unpolarized basis sets

yield poor primary potentials for such systems and our

perturbative DB approach is unable to recover satisfactory

orbitals from this poor starting point. We therefore recommend

the use of primary basis sets with at least one set of d functions

for such systems. The 6-31G(d)-6-311+G(3df, 2p) pairing is

particularly attractive due to the large ratio between the sizes

of the two basis sets.

3.3 Grid jumping

Although an impressive selection of small grids can be con-

structed by pairing small radial and angular grids, a lack of

systematic pruning21 means that none of these is optimal. To

test our dual grid approach, we therefore chose SG-0,34,35 a

small, pruned, standard grid as our primary grid. It uses

roughly 1400 grid points per atom and yields grid errors that

are roughly twice as large as the popular SG-1 grid.21

It is clear from the results in Table 1 that even this very small

primary grid introduces negligible errors into the perturbative

calculations. The primary calculations using this grid have

Table 1 Mean absolute errors (MEAN, kJ/mol), maximum absolute errors (MAX, kJ/mol), worst case (WC) and number of outliers (NO) for
DFT and DFPC calculations on the neutral G3 molecules. 21 indicates that the value from the target level B3LYP/6-311+G(3df,2p)/(75 302) was
used

Primary DFT calculation DFPC (Type A) DFPC (Type B)

Functional Basis Grid MEAN MAX NO MEAN MAX WC NO MEAN MAX WC NO

SVWN 21 21 5424 22762 257 30 73 C8H18 256 2.9 21 SF6 63
BLYP 21 21 168 589 254 5.9 15 C2F6 178 0.4 3.0 ClNO 0
EDF1 21 21 112 804 250 4.5 12 Azulene 137 0.6 4.4 SO2Cl2 1
21 6-31G 21 402 1953 257 26 340 PCl5 189
21 6-31G(d) 21 231 913 257 1.3 21 PCl5 16
21 6-311G(d) 21 78 402 254 1.6 31 PCl5 23
21 21 SG-0 2.6 22 49 0.005 0.05 SO2Cl2 0 0.00006 0.0007 B2H4 0
BLYP 21 SG-0 168 589 253 0.4 3.0 ClNO 0
21 6-31G(d) SG-0 234 894 257 1.3 21 PCl5 16
BLYP 6-31G(d) 21 415 1078 257 1.2 12 PCl5 8
BLYP 6-31G(d) SG-0 420 1054 257 1.2 12 PCl5 8
EDF1 6-31G(d) SG-0 130 518 256 1.3 11 PCl5 8
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49 outliers, but the dual grid approaches remove all of

these and yield maximum errors of 0.05 kJ/mol (DG(A)) or

0.0007 kJ/mol (DG(B)). The benefits of this are clear; the

SG-0 grid has around one fifth of the number of points of the

‘‘Fine Grid’’ and this significantly lowers the cost of the self-

consistent primary calculations. It is beyond the scope of this

Paper to construct and explore even smaller primary grids for

dual grid calculations, but our results indicate that there is

ample scope for this.

For the molecules considered, the use of SG-0 as a primary

grid has very little impact on the final energies. However, we

note that all the molecules in the data set are compact and, for

more diffuse systems such as anions and loose complexes, a

primary grid with a larger radial extent may be necessary.36

3.4 Double jumping

Having considered perturbations in each of the functional,

basis and grid dimensions separately, we now turn to double

jump methods where we consider changes in two dimensions.

Based on the results above, we tested three primary levels that

are formed from BLYP, 6-31G(d) and SG-0 primary quantities,

namely BLYP/6-311+G(3df,2p)/SG-0, B3LYP/6-31G(d)/SG-0

and BLYP/6-31G(d)/(75,302).

The results for the double jump methods in Table 1 show

that the errors for methods that jump in the grid dimension

(i.e. DFDG and DBDG) are identical to their non-grid

counterparts (DF and DB). This reconfirms that the error

introduced by the grid jump is very small. Interestingly, the

error for the DFDB method (1.2 kJ/mol) is actually smaller

than the associated DB method (1.3 kJ/mol). This indicates a

strong non-additivity of the errors in some of the multi-jump

methods. From an accuracy point of view it is clear that the

DFDG methods is the best.

3.5 Triple jumping

Finally, we consider full DFPC, where we allow changes in all

three dimensions. When doing so, it is prudent to ensure that

the treatment is balanced and that the DFPC error is not

dominated by the error in any single dimension. If it were,

further savings could be made by using cheaper primary

levels in the other two dimensions. Based on the results above,

we tested two primary levels, namely EDF1/6-31G(d)/SG-0

and BLYP/6-31G(d)/SG-0.

The results in the final two rows of Table 1 show that the

DFPC errors are very small, with means near 1.3 kJ/mol and

maxima around 12 kJ/mol. It is surprising to note that,

whereas the EDF1 primary calculations are much more

accurate than the BLYP ones, this advantage does not persist

in the resulting DFPC energies. This suggests that the EDF1

and BLYP densities are similar.

The error histograms in Fig. 2 and 3 provide further detail

on the performance of the DFPC scheme. Fig. 2 shows the

errors of the primary BLYP/6-31G(d)/SG-0 energies, which

possess a mode near 250 kJ/mol and range up to 1054 kJ/mol.

In contrast, Fig. 3 reveals that the distribution of the DFPC

errors is more than two orders of magnitude narrower, and

almost entirely concentrated between 0 and 4 kJ/mol. Most of

the eight outliers—PCl5, SO2Cl2, POCl3, P4, S2Cl2, SiCl4,

PCl3, and S2O—are hypervalent and their relatively large

DFPC errors arise because the primary basis, 6-31G(d),

struggles to describe the important d orbital participation in

these systems.

3.6 Computational cost

To assess the cost of DFPC, we compared {BLYP, B3LYP}/

{6-31G(d), 6-311+G(3df,2p)}/{SG-0, (75,302)} calculation

times with those of iterative B3LYP/6-311+G(3df,2p)/(75,302)

calculations for threonine (C4H9NO3), caffeine (C8H10N4O2),

porphine (C20H14N4) and the guanine� � �cytosine (C9H10N8O2)

DNA base pair in the Watson–Crick arrangement, abbreviated

as GCwc. The structures of threonine, caffeine and porphine

were optimized at the HF/6-31G(d) level and the structure of

GCwc was obtained from the literature.37 Because DFPC is

related to dual basis DFT (DBDFT) techniques, we also present

results for DBDFT for comparison. Our secondary calculations

used the Q-CHEM default initial guess (superposition of atomic

densities), convergence threshold (10�5) and SCF algorithm

(DIIS). A tighter integral threshold of 10�10 was used to

eliminate numerical issues.

Although the full secondary SCF calculations for these

systems required only 8–9 cycles, the DFPC calcula-

tions nonetheless show substantial speedups over the iterative

calculations. Table 2 shows the DFPC calculations take

Fig. 2 Errors of primary energies relative to secondary energies for the

neutral G3 molecules. The primary and secondary levels were BLYP/

6-31G(d)/SG-0 and B3LYP/6-311+G(3df,2p)/(75,302), respectively.

Fig. 3 Errors of DFPC energies relative to secondary energies for the

neutral G3 molecules. The primary and secondary levels were BLYP/

6-31G(d)/SG-0 and B3LYP/6-311+G(3df,2p)/(75,302), respectively.
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between 24–31% of the secondary time and introduce errors

of only 2.1–4.4 kJ/mol in the total energies. This compares

with the DBDFT calculations which, because they ignore

quadratic energy corrections from the improved density

matrix, require less CPU time (17–23%) but incur errors twice

as large 4.6–7.9 kJ/mol.

A full breakdown of where the cost savings arise is compli-

cated by the non-additive nature of the savings, however,

some insight can be obtained by considering the single jump

methods separately. Table 2 shows that jumping in the basis

direction provides the largest savings of between 64–70%. This

is due to the fact that the smaller basis affects all parts of the

energy calculation and not just the calculation of the exchange–

correlation contribution. The next largest saving is from the

type B functional jump, where the reduction in time is far

more modest as both the final Fock matrix formation and

energy evaluation are carried out in the large secondary basis.

Jumping in the grid direction appears to offer the smallest gains

in efficiency, but also introduces the smallest errors. Type A

functional jumping was not considered as the errors introduced

are much larger, and type B grid jumping was not considered as

the additional accuracy over type A is unnecessary.

Results for the three double jump methods: functional-basis

(DFDB), functional-grid (DFDG) and basis-grid DBDG, are

also shown in Table 2. Of these the DFDG method is the most

accurate, and offers useful cost savings over the DF single

jump method. The DFDB method is cheaper than DFDG and

yields near identical energies to DFPC, but at a slightly higher

cost and is therefore not recommended. The DBDG method

has a particularly attractive cost/performance ratio. It is

slightly more expensive than DFPC, but yields errors that

are more than 25% smaller.

The choice of which DFPC method to use will ultimately

depend on the desired accuracy. However, two methods

appear to stand out from a cost/performance point of view.

The triple jumping DFPC method offers the greatest potential

for for reducing the cost of the calculation and introduces

acceptable errors of around 2–4 kJ/mol. The DBDG method

has even smaller errors than DFPC and is only slightly more

expensive. However, it is worth pointing out that for large

molecules, where the Coulomb contribution can be calculated

in a linear time, DFT calculations using pure functionals are

significantly faster than those using hybrid functionals. In this

regime, jumping from a GGA to a hybrid functional is likely

to offer more significant time savings.

3.7 Default primary level of theory

DFPC is flexible enough to be able to jump between any two

combinations of functional, basis and grid. However, one must

specify six quantities to define a DFPC calculation completely.

To reduce this complexity, it is desirable to have a default

primary level of theory as part of the DFPC prescription. This

default must balance the cost savings of cheaper primary levels

of theory with the errors that are introduced. To this end, we

make the following recommendations:

� If the secondary functional is either a hybrid or meta-

GGA, then the primary functional should be BLYP, otherwise

the primary functional should be the same as the secondary.

� If the secondary basis set is larger than 6-31G(d), then the

primary basis set should be 6-31G(d). For smaller secondary

basis sets the primary should be the same as the secondary.

� The primary grid should be SG-0.

Thus, the recommended primary level of theory is usually

BLYP/6-31G(d)/SG-0. The cost of a DFPC calculation is

dominated by the final energy evaluation using the secondary

level of theory and there is little potential for computational

savings using a cheaper primary level of theory.

3.8 Geometry optimization and frequency

Because the DFPC energy is not variationally optimized at

the secondary level with respect to the molecular orbital

coefficients, the derivatives with respect to these parameters

are not zero. Consequently, calculating the exact analytic first

derivatives requires solving a single set of coupled-perturbed

SCF (CP-SCF) equations.38 This incurs a significant addi-

tional cost, which defeats the savings obtained in the under-

lying DFPC single-point calculation. We are pursing an

alternative derivative theory which avoids the CP-SCF equa-

tions and which is consistent with the underlying DFPC

perturbation philosophy. Nonetheless, to demonstrate the

potential accuracy that can be obtained for molecular geometries

and vibrational frequencies, we have optimized the structure

of H2O and calculated the vibrational frequencies using

finite-difference schemes with a step size of 0.001 Å for the

derivatives. Deviations from the secondary level of theory for

geometric parameters and frequencies are listed in Table 3.

The errors introduced by the use of numerical derivatives are

smaller than the resolution of the results in the table.

The DFPC optimized geometric parameters are almost

indistinguishable from the benchmark values with differences

in the O–H bond length and H–O–H bond angle of only a few

parts in 10 000. These errors are two orders of magnitude

smaller than those in the primary calculation. The vibrational

frequencies are more sensitive to the level of theory with

errors in the primary calculation being between 4–7%.

Table 2 Errors (kJ/mol) and timing ratios for functional (DF(B)),
basis (DB), grid (DG(A)), functional-basis (DFDB), functional-grid
(DFDG), and basis-grid (DBDG) jumping, along with DFPC and
DBDFT. The primary functional, basis and grid values BLYP,
6-31G(d) and SG-0 were used where appropriate, except for DBDFT
where the 6-311G(d) basis was used. In all cases the target secondary
level was B3LYP/6-311+G(3df,2p)/(75,302)

Threonine Caffeine Porphine GCwc

DF(B) Error 0.7 1.5 1.1 2.4
TDF/TS 0.66 0.73 0.74 0.79

DB Error 2.0 1.6 1.9 2.5
TDB/TS 0.34 0.30 0.36 0.31

DG(A) Error 0.005 0.03 0.01 0.02
TDG(A)/TS 0.69 0.83 0.81 0.83

DFDB Error 2.7 2.1 2.6 4.4
TDFDB/TS 0.33 0.29 0.37 0.31

DFDG Error 0.8 1.6 1.2 2.4
TDFDG/TS 0.52 0.47 0.60 0.53

DBDG Error 2.0 1.5 2.0 2.5
TDBDG/TS 0.25 0.25 0.40 0.29

DFPC Error 2.7 2.1 2.7 4.4
TDFPC/TS 0.24 0.24 0.31 0.27

DBDFT Error 4.6 5.3 6.2 7.9
TDBDFT/TS 0.22 0.17 0.23 0.21
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The corresponding errors for the DFPC calculation are only a

few parts in 1000 and also span a smaller range, indicating a

more reliable level of theory. It is clear from these results that,

as long as they can be computed efficiently, DFPC derivatives

are very accurate.

4. Conclusions

We have examined several perturbative corrections that use the

results of a low-cost primary SCF calculation to estimate the

energy of a more expensive secondary calculation. Our methods,

which can be viewed as vertices on a cube whose dimensions

represent the functional, basis and grid, all offer time savings

compared to the full iterative secondary calculation.

We have tested the accuracy of our DFPC approaches by

computing total energies of the 257 neutral molecules in the

G3 set. The {BLYP, B3LYP}/{6-31G(d), 6-311+G(3df, 2p)}/

{SG-0, (75,302)} level of DFPC yields energies with a mean

absolute error of only 1.2 kJ/mol, relative to full iterative

B3LYP/6-311+G(3df,2p)/(75,302) calculations. Moreover, such

calculations on threonine, caffeine, porphine and GCwc take

around a quarter of the time of the secondary calculations.

Although cheaper primary levels of theory are possible, our

results indicate that local density functionals such as SVWN

are not accurate enough and unpolarized primary basis sets

also introduce unacceptable errors. The choice of the primary

grid is much less important and, although we have used SG-0

here, it should be possible to use even smaller grids without

significantly affecting the DFPC energies. For these reasons we

recommend the use of BLYP/6-31G(d)/SG-0 for the primary

level of theory in most cases.

Reduced variants of DFPC, where jumps are made in only

one or two of the dimensions, were also investigated. These

methods offer a variety of cost/performance points and the

DBDG method is particularly attractive as it yields much

more accurate energies than DFPC at only a slightly increased

cost. Performance comparisons with related DBDFT scheme

show that, using the recommended primary levels of theory,

DFPC is slightly more expensive than DBDFT but introduces

errors that are only half large.

Using numerical derivatives, we have considered the accuracy

of DFPC for geometry optimizations and frequency calcula-

tions. The preliminary results are in very good agreement with

the benchmark values and provides motivation for developing

an analytic gradient theory that avoids solving the expensive

CP-SCF equations.

We have focused on hybrid density functionals for our

secondary calculation, but our approach can also be applied

to the more recent meta-generalized gradient approximation

(meta-GGA) functionals, which explicitly depend on the

kinetic energy density. Although more accurate, these func-

tionals are even more expensive than hybrids and show an

increased sensitivity to the choice of integration grid.39 Our

DFPC scheme has the potential to alleviate these problems.
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