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Efficient calculation of p-values in linear-statistic
permutation significance tests
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It is shown that the exact p-values of permutation and bootstrap hypothesis tests of difference between
groups can be written as an infinite series whose terms can be computed rapidly, even for large group
sizes. Because of connections with the N -step random walk in the plane, the rate of convergence of
the series improves as the size of the resampling distribution increases.
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1. Introduction

Resampling significance tests possess a number of desirable properties: they are conceptually
simple, unbiased, powerful and free of assumptions about the parent populations involved.
There exists a huge literature in this area, including canonical works by Fisher [1], Pitman
[2], Efron [3], Edgington [4], Davison and Hinkley [5] and Good [6]. Unfortunately, even
if we restrict ourselves to the simplest case, in which a set of m observations and a set of n

observations are pooled and then redistributed in all possible ways, the number of possible
permutations can be vast (unless m and n are small), and the impossibility of exhaustively
enumerating these in a reasonable time has restricted the extent to which exact permutation
tests have been used in practice. For similar reasons, significance tests based on the exact
bootstrap have rarely been implemented because of the formidable size of the resampling
distribution. Most commonly, practitioners resort to random sampling from the permutation
or the bootstrap distributions.

The practical problems associated with exhaustive enumeration and the statistical problems
associated with random sampling are discussed in detail in Good’s book. The author also
devotes an entire chapter to the problem of increasing computational efficiency and gives an
extensive bibliography of algorithms that have been proposed.

Our aim here is to show that, if the test statistic is linear, is possible to compute the p-value
without exhaustive enumeration of the full permutation or bootstrap set and the computational
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time required is trivial, particularly when the resampling space is very large. Our approach is
related to work by Pagano and Tritchler [7] but does not suffer from the numerical problems
associated with the use of fast Fourier transforms [see ref. 8]. We hope that this will prove
useful to statisticians who would like to use a resampling test but who would otherwise be
deterred by the size of the total resampling distribution.

2. Theoretical formulation

Under the usual null hypothesis, all admissable resamples of the data are equally likely and
we seek the fraction p of these whose corresponding test statistic is more extreme than that
originally obtained. To quantify this, we introduce a statistic T , with observed value t , and
then define the one-tailed significance level as p = pr(T > t) + pr(T = t)/2. The two-tailed
extension of this is straightforward. If T is linear, scaling the data by a positive constant will
not affect p and it will be convenient to prescale so that max |t∗r − t | = 9π/10, where t∗r is
the value of T in the rth resample.

If the total number of admissible resamples is N , we can write

p = N−1
N∑

r=1

H(t∗r − t)

H(x) =




0 x < 0

1/2 x = 0

1 x > 0

and, if we substitute the Fourier expansion (whose |x| < π validity is ensured by the prescaling
earlier), we obtain

H(x) = 1

2
+ 2

π
�

∞∑
k′=1

exp(ikx)

k

where k = 2k′ − 1 and �(z) is the imaginary part of z. Inverting the order of the finite and
infinite sums then yields the convergent series

p = 1

2
+ 2

π
�

∞∑
k′=1

�(k) exp(−ikt)

k

where we have introduced the partition function

�(k) = N−1
N∑

r=1

exp(ikt∗r )

The potential usefulness of this reformulation depends on two questions.
Question 1: Does the infinite series for p converge satisfactorily? The answer to this depends

to some extent on the characteristics of the distribution of the data. For small k, we can
estimate �(k) by assuming that t∗r ∼ N(µ, σ 2) and replacing the sum over resamples by an
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integral to obtain

�(k) ≈
∫ ∞

−∞
1

σ
√

2π
exp

[
− (t − µ)2

2σ 2

]
exp(ikt) dt

= exp

(
ikµ − σ 2k2

2

)

which indicates that, if the resampling distribution of t is normal, the infinite series will initially
converge rapidly. Numerical experiments suggest that the initial convergence is slower when
the resampling distribution is non-normal but that it is still quite fast. For large k, we can
estimate �(k) by assuming that the kt∗r mod 2π are uniformly distributed in [0, 2π). This
‘random-phase’ assumption allows us to interpret |�(k)| as the net progress of an N -step
random walk in the plane [see refs. 9–12] and to deduce that E[|�(k)|2] = 1/N . This implies
that the later terms in the infinite series for p will fluctuate around zero with root-mean-square
deviation O[1/(N1/2k)]. Thus, we expect the terms in the series to decay rapidly until they
reach O[1/(N1/2k)] and then to decay very much more slowly. Such convergence behaviour
should be satisfactory in cases where N is large but will be less so if N is small. However, in
the latter case, exhaustive enumeration is feasible.

The random-phase assumption is most reasonable in cases where the intrinsic resolution
of the data is high. The exact distribution of kt∗r mod 2π is a sum of N delta functions and,
if both k and N are large, this can closely approach a uniform distribution. However, when
the data resolution is low, many of the delta functions coalesce and the uniform distribution
assumption becomes much poorer. In such cases, the sequence of �(k) contains periodic
‘spikes’ that degrade the convergence rate of the series for p.

Question 2: Can �(k) be computed rapidly when N is large? The answer to this depends on
the form of T and the definition of admissible resamples but, in the important case where T is
linear, exp(ikt) factorises and the calculation of �(k) becomes almost trivial. Four particular
cases will illustrate this.

3. Permutation test for matched pairs

A randomized matched-pair experiment to compare two treatments produces paired responses
{xq, yq} from which the paired differences dq = xq − yq are calculated for q = 1, . . . , n. The
null hypothesis H0 of no treatment difference implies that the dq are sampled from a distribution
that is symmetric with zero mean. We define T to be the sum of the dq and Fisher’s permutation
test considers the N = 2n resamples obtained by changing the signs of the dq .

By definition, we have

�(k) = 2−n
∑

s1=±1

· · ·
∑

sn=±1

exp


ik

n∑
j=1

sj dj


 =

n∏
j=1

cos kdj

and the practical consequence of this factorisation is that, although each �(k) is a mean
of N = 2n exponentials, it can be evaluated exactly in O(n) floating-point operations. The
permutation-test significance level is thus

p = 1

2
− 2

π

∞∑
k′=1

sin kt

k

n∏
j=1

cos kdj
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Table 1. Matched-pair significance tests (Darwin data, n = 15).

Permutation test Bootstrap test
(N = 215 = 32,768) (N = 3015 = 1.4 × 1022)

k �(k) Partial sum �(k) Partial sum

1 +0.8651202054 0.0264993197 +0.9500697835 0.1500657699
3 +0.2523199843 0.0245000457 +0.6292375852 0.0217413641
5 +0.0117796933 0.0258430766 +0.2725947929 0.0197723135
7 −0.0000090442 0.0258437504 +0.0751958197 0.0260880499
9 +0.0000055141 0.0258437068 +0.0126162029 0.0266835002

11 +0.0000391304 0.0258458043 +0.0011956147 0.0266501173
13 −0.0005027400 0.0258648633 +0.0000567313 0.0266473776
15 −0.0003475003 0.0258676014 +0.0000010952 0.0266473697
17 +0.0000005976 0.0258676227 +0.0000000058 0.0266473699
19 −0.0000005658 0.0258676364 +3 × 10−12 0.0266473699
21 +0.0000007006 0.0258676310 +9 × 10−18 0.0266473699
23 −0.0000264304 0.0258669199 −7 × 10−31 0.0266473699
25 +0.0000294811 0.0258664159 −1 × 10−17 0.0266473699
27 −0.0000893130 0.0258671105 −2 × 10−14 0.0266473699
29 −0.0000015974 0.0258670759 −3 × 10−13 0.0266473699
31 +0.0000095028 0.0258669560 −8 × 10−13 0.0266473699
33 −0.0000308215 0.0258671935 −4 × 10−13 0.0266473699
35 −0.0000030879 0.0258671376 −5 × 10−14 0.0266473699
37 +0.0005511601 0.0258618885 −1 × 10−15 0.0266473699
39 +0.0008794728 0.0258551889 −3 × 10−18 0.0266473699
∞ 0.0259094238 0.0266473631

and, for illustration, we have applied it to the self- and cross-fertilized plant data obtained by
Darwin and discussed by Fisher [1], viz.

{dj } = {−67, −48, 6, 8, 14, 16, 23, 24, 28, 29, 41, 49, 56, 60, 75}
The exact value of p (for a one-tailed test) was computed by Fisher who considered all of
the N = 215 = 32,768 resamples and obtained p = 849/32,768 = 0.0259094238. Because
max |t∗r − t | = 858, we scale the data by 3π/2860. This yields t = 471π/1430 and the first 20
�(k) and partial sums of the series that result are listed in table 1. The �(k) initially decrease
rapidly and the partial sum after three terms differs from the exact value by less than 0.0001.
However, subsequent �(k) values are of variable sign and, although most are smaller than
the random-phase estimate N−1/2 ≈ 0.0055, they do not decay further and exhibit a spike
whenever k is a multiple of 477. As a result, it is easy to obtain the first three or four decimal
places of the exact p-value but many more terms in the series are needed if greater accuracy
is required.

4. Bootstrap test for matched pairs

A bootstrap analogue of the Fisher permutation test considers the N = (2n)n resamples r

obtained by sampling with replacement from the bootstrap space given by the union of set of
differences dq and their negatives −dq and seeks the fraction of these that yield t∗r > t . By
definition, we have

�(k) = (2n)−n
∑

s1=±1

n∑
j1=1

· · ·
∑

sn=±1

n∑
jn=1

exp


ik

n∑
q=1

sqdjq


 =


1

n

n∑
j=1

cos kdj




n
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which shows that, as in the Fisher test, each �(k) can be evaluated exactly in O(n) real
floating-point operations. It is interesting to compare the bootstrap �(k) (the nth power of the
mean of the cosines) with the analogous permutation �(k) (the product of the cosines) and it
is easy to show that the two are identical to third order in the kdj .

The bootstrap-test significance level is thus

p = 1

2
− 2

π

∞∑
k′=1

sin kt

k


1

n

n∑
j=1

cos kdj




n

We illustrate this by applying it to the Darwin data, after scaling them by 9π/14,390 which
leads to t = 1413π/7195. The first 20 �(k) and partial sums are shown in table 1. The �(k)

decrease noticeably more rapidly than in the permutation test and, as a result, the partial sums
converge more quickly. Although we cannot find the exact value by exhaustive enumeration
(the bootstrap space is too large), we have found that the addition of a further 1000 terms of
the series for p affects the partial sum only in the 9th decimal place.

5. Permutation test for two independent samples

Given two set of observations, {x1, . . . , xm} and {xm+1, . . . , xn}, we define t = x1 + · · · + xm.
The Fisher permutation test considers the N = nCm resamples r formed by permuting the
data between the sets and seeks the fraction of these that yield t∗r > t .

By definition, we have

�(k) = (nCm)−1
n∑

j1=1

n∑
j2>j1

· · ·
n∑

jm>jm−1

exp


ik

m∑
q=1

xjq




but this does not factorise because the resampling in this case is done without replacement.
Nonetheless, if we define

a�b(k) =
a∑

j1=1

a∑
j2>j1

· · ·
a∑

jb>jb−1

exp


ik

b∑
q=1

xjq




then the pseudo-binomial recurrence relation

a�b(k) = a−1�b(k) + a−1�b−1(k) exp(ikxa)

can be used to generate �(k) ≡ n�m(k)/N from the boundary values a�0(k) = 1 and
a�a+1(k) = 0 in O[m(n − m)] complex floating-point operations.

For illustration, we analyse the management scores given in table 2.1 of the textbook by
Noreen [13], viz.

{x1, . . . , x13} = {10, 18, 22, 25, 25, 27, 28, 33, 34, 36, 37, 38, 38}
{x14, . . . , x47} = {00, 07, 07, 10, 13, 17, 22, 22, 23, 25, 25, 25, 25, 25, 26, 26, 26,

26, 27, 27, 28, 28, 29, 30, 31, 31, 32, 34, 36, 36, 36, 39, 40, 40}
Exhaustive examination of the N = 47C13 = 140,676,848,445 possible resamples is a non-
trivial task but is possible on a fast PC and one finds that 24,448,145,734 of these yield
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Table 2. Two-sample significance tests (Noreen data, nA = 13, nB = 34).

Permutation test Bootstrap test
(N = 47C13 = 1.4 × 1011) (N = 4747 = 3.9 × 1078)

k |�(k)| Partial sum |�(k)| Partial sum

1 0.8997397012 0.2620946467 0.9779245468 0.3762969175
3 0.3790735618 0.1862707516 0.8180935447 0.2789269241
5 0.0601547051 0.1788258788 0.5729320155 0.2184755258
7 0.0030028372 0.1785535152 0.3364157254 0.1887321081
9 0.0000676002 0.1785545436 0.1660678581 0.1770293172

11 0.0000337348 0.1785528909 0.0692131305 0.1732871024
13 0.0000207736 0.1785519190 0.0245145575 0.1722867979
15 0.0000033650 0.1785517950 0.0074505327 0.1720528887
17 0.0000002173 0.1785517876 0.0019700177 0.1720020230
19 0.0000000012 0.1785517876 0.0004618448 0.1719911516
21 0.0000000094 0.1785517874 0.0000983990 0.1719888286
23 0.0000000469 0.1785517876 0.0000196342 0.1719883442
25 0.0000000406 0.1785517867 0.0000037933 0.1719882492
27 0.0000002382 0.1785517830 0.0000007326 0.1719882322
29 0.0000005052 0.1785517741 0.0000001449 0.1719882294
31 0.0000000329 0.1785517741 0.0000000297 0.1719882290
33 0.0000003338 0.1785517693 0.0000000063 0.1719882290
35 0.0000001374 0.1785517679 0.0000000013 0.1719882289
37 0.0000000133 0.1785517681 0.0000000003 0.1719882289
39 0.0000000176 0.1785517683 0.0000000001 0.1719882289
∞ 0.1785761415 0.1719882289

t∗r > t and 1,346,766,114 yield t∗r = t , so that the exact permutation significance level is
p = 0.1785761415.

Alternatively, after scaling the data by 9π/1750, we obtain t = 477π/250 and the |�(k)|
and partial sums shown in table 2. As it was found in the Darwin example, the �(k) initially
decay rapidly and then fluctuate. However, because the size of the resampling space is much
larger for the Noreen data, the fluctuations are roughly three orders of magnitude smaller and
the partial sums converge more rapidly.

6. Bootstrap test for two independent samples

Given two sets of observations, {x1, . . . , xm} and {xm+1, . . . , xn}, we define

t = 1

m

m∑
q=1

xq − 1

n − m

n∑
q=m+1

xq

and the bootstrap test considers the N = nn alternative sets r obtained by resampling, with
replacement, from the pooled data {x1, . . . , xn} and asks what fraction of these yield t∗r > t .

By definition, we have

�(k) = n−n

n∑
j1=1

· · ·
n∑

jn=1

exp


ik


 1

m

m∑
q=1

xjq
− 1

n − m

n∑
q=m+1

xjq







= ψ

(
k

m

)m

ψ

(
k

m − n

)n−m
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where

ψ(ω) = 1

n

n∑
j=1

exp(iωxj )

and thus, although N = nn can be very large, �(k) can be evaluated exactly in O(n) complex
floating-point operations.

We illustrate this approach by applying it to the Noreen scores. After scaling by 9π/400,
we obtain t = 2817π/44,200 and the �(k) and partial sums shown in table 2. Exhaustive
examination of the full bootstrap space (N > 1078) is clearly impossible but it is also clear
that the series for p-value converges rapidly. As expected from the random-phase assumption,
the |�(k)| values beyond k = 39 continue to decrease before eventually fluctuating around
10−39. We can therefore be confident that the exact significance value is 0.1719882289 . . ..

7. Conclusions

We have shown that it is possible to write the p-value for a variety of permutation and boot-
strap significance tests as an infinite series whose terms can be computed rapidly, even when
the group sizes are large. Moreover, if the resampling distribution is extremely large, such
series often converge rapidly, allowing the p-value to be determined accurately with little
computational effort. The series converges most rapidly when the intrinsic resolution of the
data is high but convergence is usually satisfactory even when this is not the case.
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