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Abstract

Ž . Ž .The computation of the Coulomb and exchange components J u and K u , respectively, of the Hartree–Fock radial
intracule density within the PRISM approach is discussed. Formulae are presented for the even-origin derivatives of these

Ž . Ž .quantities and for the even-order moments of J u . For molecular systems, we demonstrate that J u has, as expected,
Ž .long-range nature comparable with the molecular extent but, in contrast, that K u is relatively short-range, with

delocalisation effects providing additional structure and enhancing the range of the intracule. q 1999 Elsevier Science B.V.
All rights reserved.

1. Introduction

w xThe evaluation of the Coulomb 1–8 and ex-
w xchange 9,10 energies with a computational cost that

grows linearly with the system size has been an
active field of research over the past few years.
Algorithms for the construction of the Coulomb en-
ergy include hierarchical methods using multipole

w xexpansions 2–4 , techniques which mathematically
w xpartition the Coulomb operator 5,8 and approaches

w xbased on the divide-and-conquer philosophy 6,7,11 .
The existing approaches for the construction of ex-

w xchange terms 9,10,12 are all based on the exponen-
w xtial decay of the density matrix in insulators 13 . It

is clear that insight into the nature of interelectronic
interactions is important in the development of effi-
cient algorithms for the computation of the Coulomb
and exchange energies. In this Letter, we argue that

) Corresponding author. Fax: q44-1223-33-6362; e-mail:
aml@theor.ch.cam.ac.uk

construction and analysis of the Coulomb and ex-
change intracule densities may provide such insight.

Ž . w x Ž Ž Ž ...The intracule density I u 14 Eq. Eq. 1 is
the probability density for the interelectronic vector
u,

I u s r r ,rqu d r , 1Ž . Ž . Ž .H 2

Ž .where r r ,r is the diagonal second-order spin-2 1 2
w xless density matrix 15 . The spherical integral of this

quantity is the radial intracule density,

P u s I u dV . 2Ž . Ž . Ž .H u

Ž 2The Jacobian factor u is included in this integra-
. Ž . Ž .tion. The intracule densities I u and P u have

been the focus of many studies and their computa-
tion has been considered in a number of papers
w x16–18 . In recent work, the intracule density of the

w xuniform electron gas 19 , the MP2 intracules of a
w xnumber of atomic systems 18 , and the intracule

0009-2614r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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Laplacian distribution for the hydrocarbons C H2 n
Ž . w xns2,4,6 20 have been examined, for example.

In this Letter, we examine intracules derived from
Ž .Hartree–Fock HF wavefunctions and, therefore,

Ž . Ž . Ž .consider only HF r r and r r ,r . The HF P u2 1 2

can be decomposed into Coulomb and exchange
components:

P u sJ u qK u , 3Ž . Ž . Ž . Ž .

Ž .where the radial Coulomb intracule density J u is

1J u s r r r rqu d r dV . 4Ž . Ž . Ž . Ž .HH u2

Ž .The Coulomb and exchange intracules J u and
Ž . 2K u integrate to N r2 and yNr2, respectively,

where N is the number of electrons. The Coulomb
and exchange energies are given as the integrals

`
y1E s u J u du , 5Ž . Ž .HJ

0

`
y1E s u K u du , 6Ž . Ž .HK

0

Ž . Ž .and it can be shown that J u 00 and K u (0 for
Ž .all u. J u is proportional to the probability density

function for the separation u between two electrons
Ž .moving independently in the density r r .

In Section 2, we discuss an efficient approach to
the computation of the integrals necessary to assem-
ble radial intracule densities. The computation of
moments of the Coulomb intracule is examined in
Section 3 and a generalised formulation to compute
the even derivatives of the Coulomb and exchange
radial intracule densities at the origin is discussed in
Section 4. Finally, in Section 5, we present radial
intracules for a number of systems. The calculation
of radial intracules, derivatives and moments has
been implemented in a development version of Q-

w xCHEM 21 .

2. Calculation of radial intracule densities

In this section, we discuss the computation of the
Coulomb and exchange intracules. To compute these

Ž . Ž .intracules, we exploit the fact that J u and K u

can be written as integrals over the 2-electron opera-
w xtor 22

f rŽ .u 12
sd uyr , u)0 7Ž . Ž .12r12

< <where r s r yr . Consequently, the intracules12 1 2

can be assembled from the 2-electron integrals

f rŽ .u 12
<ab cd s f r f r f rŽ . Ž . Ž . Ž .HHu a 1 b 1 c 2r12

=f r d r d r , 8Ž . Ž .d 2 1 2

Ž .where f r is a contracted Gaussian-type orbital,a

by contraction with the density matrix in a manner
analogous to the formation of the Coulomb and

w xexchange energies. In the PRISM 23,24 approach,
Ž < .the ab cd are constructed from the fundamentalu

w xintegrals m . The step that will be discussed here isu
w xthe formation of the integrals m of the radialu

Ž .intracule operator 7 .
For a general multiplicative 2-electron operator of

Ž . w xa scalar argument, f r rr , the 0 integrals may12 12
w xbe computed in real-space using the expression 25

2u exp yTŽ .
w x0 sU UP Q 'pT

=
` s

2 'f exp ys sinh 2 s T d s . 9Ž . Ž .Ž .H ž /u0

w xT , u , U and U have their usual meanings 23 .P Q
w xAlgebraic forms for the m integrals are obtained by

w xdifferentiating the 0 :
m w xE 0m 2 mw xm s y2 u , 10Ž . Ž .mž /ET u

w xconsidering the 0 a function of the shell-quartet
quantities T and u .

Ž .For integrals over the radial-intracule operator 7 ,
one obtains

2uu 2 exp yTŽ .
2 2w x0 sU U exp yu uŽ .u P Q 'pT

= 'sinh 2uu T , u)0 . 11Ž .Ž .
w xThe higher-order fundamental integrals m are mostu

Ž .compactly written in terms of the functions q x ,n

exp yxŽ .
q x s i x , 12Ž . Ž . Ž .n nnx
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Ž .where the i x are modified spherical Bessel func-n
w xtions of the first kind 26 ,

n1 d sinh xŽ .
ni x sx . 13Ž . Ž .n ž /x d x x

Ž .The q x are well-behaved for small and large xn

and decrease monotonically from the origin. The
functions have the limits

1
lim q x s , 14Ž . Ž .n 2nq1 !!x™0 Ž .
lim q x s0 . 15Ž . Ž .n
x™`

Ž .Using the q x , one findsn

mq 12 22u u 2uŽ . 2'w xm sU U exp y uuy TŽ .u P Q 'p

=
m

k 2 km 'y2 uu q 2uu T ,Ž . Ž . Ž .Ý kž /k
ks0

16Ž .

for u)0. We will later consider the right-hand
w xderivatives of the m with respect to u.u

Ž .To speed up the computation of the q x , we usen
w xinterpolation tables 27 for x-x and asymptoticmax

Žexpansions outside this range x is chosen suchmax

that the error in the use of asymptotic expansions is
.negligible, for example x s1000 . The asymp-max

Ž . w xtotic expansion of I x 26 may be used to deriven

Ž .the expansion for the q x ,n

1 my1 my1 my9Ž . Ž . Ž .
q x ; 1y qŽ .n nq1 28 x2 x Ž . 2! 8 xŽ .

my1 my9 my25Ž . Ž . Ž .
y q PPP ,33! 8 xŽ .

17Ž .
Ž .2 < <where ms 2nq1 and x ™`. These asymptotic

expansions terminate when n is an integer, as is the
Ž .case in 16 . In the present approach, we have used a

Ž .cubic Taylor interpolation table for q x , nsn

1,2, . . . n . The table may be evaluated once themax

accuracy and cutoff x have been specified.max

When computing a radial intracule density for a
range of points, it is clear that shell-quartet quantities
such as T and u should not be recomputed for each

w xpoint, as observed by Cioslowski and Liu 17 . In the
present implementation, the loop over points has
been located within the loop over shell-quartets and
this approach has been further refined by splitting
the points loop into two regions: the first where
interpolation is used for the q , and the secondn

where asymptotic expansions are used. This strategy
maximises savings gained using interpolation. For a
grid of equally separated points, it is straightforward
to determine the index of the division point.

3. Computation of radial intracule moments

The s-order moments of the Coulomb and ex-
change intracules

`
sJ s u J u du , 18Ž . Ž .Hs

0

`
sK s u K u du , 19Ž . Ž .Hs

0

can, in general, be constructed from the fundamental
w x2-electron integrals 0 of the operators

f rŽ .s 12 ssr , 20Ž .12r12

Ž . w xusing 9 and the auxiliary integrals m then deter-s
Ž .mined via 10 . In principle, these expressions can be

evaluated for all s)y3. We do not investigate this
approach at the present time.

For s an even integer 2n, the moments of the
Coulomb radial intracule can be formed more effi-
ciently by taking advantage of the factorisation of

2 n w xr to yield 2812

nypn
p1 2Ž nypyq .² :J s y2 f r r r PPPŽ . Ž .Ý Ý2 n n p q a b2 p

ps0 qs0

= ² 2 q :r r r PPP . 21Ž . Ž .a b p

This expression can be reformulated as

nypn
p1J s y2 f Z , 22Ž . Ž .Ý Ý2 n n p q n p q2

ps0 qs0
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where

k!
f s , 23Ž .k p q p!q! kypyq !Ž .

p pyn
Žkypyq . Žq .Z s f T T , 24Ž .Ý Ýk p q pnm pnm pnm

ns0 ms0

T Žk . s r 2 k x n y mz Ž pynym.r r d r . 25Ž . Ž .Hpnm

This formulation allows the computation of the J2 n

for arbitrary integral n00 with a cost that grows
linearly with the system size. The computation of the

w xJ in Q-CHEM 21 was first performed by Adamson2 n
w x29 using explicit formulae for a range of n values.

4. Computation of radial intracule derivatives

While the moments of the radial intracule density
Ž .P u have been thoroughly studied, both for corre-

lated and uncorrelated wavefunctions, its derivatives
from the right have not been investigated in detail. In
Section 4, we examine the computation of deriva-
tives of the radial intracule density. The expansion of
the radial intracule density about us0q may be
written as

P u sP Ž2.u2 qP Ž3.u3 q PPP , 26Ž . Ž .
where

n1 E P uŽ .
Žn.P ' . 27Ž .nž /n! Eu qus0

Ž .If all of the derivatives of the density r r and
Ž .density matrix r r ,r exist at all points in space2 1 2

Žwhich is true for HF calculations using Gaussian
. Ž .basis functions then the expansions of P u and

Ž .J u contain only even terms and therefore

4p n XŽ2 nq2. 2
XP s = r r ,r d r ,Ž .Ž .H Xr 2 r sr2nq1 !Ž .

28Ž .
2p nŽ2 nq2. 2J s r r = r r d r , 29Ž . Ž . Ž .Ž .H r2nq1 !Ž .

providing an interesting route to the computation of
these quantities. K Ž2 nq2. is defined as the difference
P Ž2 nq2.yJ Ž2 nq2.. Using integration-by-parts, it is

straightforward to prove that J Ž2 n. and K Ž2 n. alter-
nate in sign as n increments. It may also be shown
that J Ž2.)0 and K Ž2.-0 and, for closed-shell sys-
tems, that J Ž2.sy2 K Ž2..

Ž .Differentiation of 11 with respect to u and
evaluation at us0,

2 nw x1 E 0 uŽ .2 nw x0 ' , 30Ž .2 nž /2n ! EuŽ . qus0

leads immediately to the fundamental integrals for
the even intracule derivatives. Expressed in terms of

Ž . w xthe Hermite polynomials H x 26 , these aren

2u 2 nq1
Ž .2 nw x0 sU UP Q 'pT 2ny1 !Ž .

= 'exp yT H T , ns1,2, . . .Ž . Ž .2 ny1

31Ž .
w xŽ0.with 0 s0. Using the recurrence properties of the

Hermite polynomials, it follows that
2y2uŽ . Ž .2 n2 nq2w x w x0 s 2nyTy1r2 0Ž .

n 2nq1Ž .
Ž .2 ny22 w xqu 0 , ns1,2, . . . . 32Ž .

A two-index recurrence relationship for higher-order
fundamental integrals can be derived by using Leib-

Ž . Ž .niz’ formula to apply the definition of 10 to 32
2y2uŽ . Ž .2 n2 nq2w x w xm s 2nyTy1r2 mŽ .

n 2nq1Ž .
Ž . Ž .2 n 2 ny22 2w x w xq2u m my1 qu m ,

ns1,2, . . . . 33Ž .
The boundary conditions for this recurrence are

Ž .0w xm s0 , 34Ž .
mq 122u 2uŽ .Ž .2w xm sU U exp yT ,Ž .P Q 'p

ms0,1, . . . . 35Ž .
We note in passing that the use of interpolation
tables for quantities such as

'exp yT H TŽ . Ž .2 ny1
36Ž .'T 2ny1 !Ž .
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and its derivatives with respect to T should yield an
improvement in efficiency over a recursive evalua-
tion.

5. Results and discussion

In Section 5, we examine Coulomb and exchange
intracules computed using unrestricted HF wavefunc-
tions. To test our intracule curves, we have verified
that we obtain, by numerical integration, the correct
normalisation integrals, and energies for a number of

Ž .test systems. The moments of the J u are consistent
with those obtained by numerical integration. Satis-
factory agreement between the lower-order deriva-

Ž . Ž .tives of J u and K u computed numerically and
those computed analytically for a number of di-
atomic molecules has also been obtained. We have
reproduced the Coulombqexchange energy, nor-
malisation integral, first- and second-order moments

Ž . w xof P u given by Wang et al. 30 for Ne, H and2

LiH. With the exception of the peptide endothelin-1
w x31 , the intracule curves plotted have been computed
using a 0.1 bohr point separation and high density-
matrix convergence, integral thresholds and interpo-
lation table accuracy. For endothelin-1, a 0.05 bohr
point separation was used along with lower values
for the convergence, thresholds and accuracy param-
eters. All calculations use a value of x s1000 formax

the interpolation table cutoff. The plotted curves
w xhave been interpolated 32 . All results are given in

Ž . Ž .atomic units, e.g., u is in bohr and P u , J u and
Ž .K u are in hartree.

In Table 1, the base-2 logarithms of the quantities
< Ž2 n. < < Ž2 n. <J , K and J are given for a sequence of2 n

˚Žall-trans polyalkenes r s1.46 A, r s1.32C – C C-C
˚ ˚ .A, r s1.09 A, trigonal angles at each C atomCH

with the STO-3G basis set. For each polyalkene, the
growth of the J Ž2 n. is approximately exponential,
< Ž2 nq2. < < Ž2 n. <J f8 J . Each polyalkene in the sequence
is approximately double the preceding member in
size and, for fixed 2n, the J Ž2 n. almost exactly
double moving up the sequence, reflecting that J Ž2 n.

is a linear scaling property. The base-2 logarithms of
< Ž2 n. < < Ž2 n. <the K behave similarly to those of the J .

The results illustrate the relationship J Ž2.sy2 K Ž2..
For each polyalkene, the growth of the J is also2 n

approximately exponential, although the factor of
increase is not constant over the polyalkene series.
Rough scaling arguments suggest that the value of
J will increase by 22 n moving to an polyalkene2 n

double in size and this is also approximately ob-
served. For example, J is approximately 220 times20

larger in C H than in C H .8 10 4 6
Ž . Ž .The radial intracule densities J u and K u of

˚Ž .the nitrogen atom and molecule r s1.12998 ANN

with the STO-3G and cc-pVQZ basis sets are given
w xin Fig. 1. Thakkar et al. 33 examined the topologi-
Ž .cal features of a HF P u for N . The features of2

Ž .J u are dominated by pairwise interactions between
regions of high density. The innermost peak on the
curve for the N atom results from the self-interaction
of core electrons while the broad second peak pre-
sumably arises from the core–valence and valence–
valence interactions. Both of these peaks are present
in the N intracule which also contains a peak at2

Table 1
< Ž2 n. < < Ž2 n. < < Ž2 n. <Base-2 logarithms of the J , K and J values for a sequence of polyalkenes with the STO-3G basis. The signs of J and2 n

< Ž2 n. < Ž .nq 1 Ž .nK are y1 and y1 , respectively. J )02 n

Ž2 n. Ž2 n.< < < < Ž .2n log J log K log J2 2 2 2 n

C H C H C H C H C H C H C H C H C H C H C H C H4 6 8 10 16 18 32 34 4 6 8 10 16 18 32 34 4 6 8 10 16 18 32 34

2 9.60255 10.6017 11.6012 12.6010 8.60255 9.60166 10.6012 11.6010 13.2375 16.7373 20.5403 24.4630
4 13.8477 14.8479 15.8479 16.8480 12.8666 13.8667 14.8668 15.8668 18.6297 23.9038 29.6436 35.5396
6 17.7695 18.7697 19.7698 20.7698 16.7745 17.7746 18.7747 19.7748 24.5172 31.5253 39.1788 47.0405
8 21.5171 22.5173 23.5174 24.5175 20.5189 21.5191 22.5192 23.5192 30.7144 39.3858 48.9345 58.7584

10 25.0736 26.0738 27.0740 28.0740 24.0747 25.0749 26.0750 27.0750 37.1365 47.4002 58.8261 70.6091
12 28.4346 29.4348 30.4349 31.4350 27.4353 28.4355 29.4356 30.4357 43.7403 55.5275 68.8110 82.5498
14 31.6199 32.6201 33.6202 34.6203 30.6204 31.6206 32.6207 33.6208 50.5007 63.7451 78.8647 94.5556
16 34.6545 35.6548 36.6549 37.6549 33.6549 34.6551 35.6552 36.6553 57.4015 72.0391 88.9718 106.611
18 37.5592 38.5594 39.5595 40.5596 36.5594 37.5596 38.5597 39.5598 64.4304 80.4008 99.1224 118.705
20 40.3483 41.3486 42.3487 43.3487 39.3485 40.3487 41.3488 42.3489 71.5780 88.8242 109.309 130.831
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Ž . Ž . Ž .Fig. 1. The intracules J u and K u for N lower curves and N2
Ž .upper curves with the STO-3G and cc-pVQZ basis sets.

approximately the internuclear separation primarily
resulting from the interaction of core densities on the
separate centres. The broad tails of the N curves2

suggests that the internuclear core–valence and va-
lence–valence interactions are buried in this region.
Rationalising the effect of exchange as supplying a
‘self-interaction’ correction, the exchange intracule
should have peaks for the core–core and valence–va-
lence self-interactions and this is observed. Since the
qualitative features of these intracules remain largely
unchanged between the STO-3G and cc-pVQZ basis
sets, we have decided to use the small STO-3G basis
for our calculations on larger systems.

In Fig. 2, the intracule densities for the polyalkene
Ž .C H are given. The maxima in J u occur at the8 10

values of u corresponding to internuclear separa-
tions, as expected, with the peak closest to the origin
arising primarily from the self-interaction of the core

Ž .electrons. The self-interaction effect of K u is also
evident as is the short-range nature of this intracule

Ž .compared to Coulomb intracule J u . In Fig. 3 the
exchange intracules for the ‘linear’ alkane C H8 18

Ž . Ž . Ž .Fig. 2. The intracules P u , J u and K u for the polyalkene
C H with the STO-3G basis set.8 10

˚ ˚Ž r s1.4 A, r s1.09 A, tetrahedral angles atCC CH
.each C atom and polyalkene C H are compared.8 10

These intracules are normalised to integrate to y1.
Although the intracules appear very similar near the
origin, closer examination shows that oscillations in
the tails of the curves are only noticeable for the
polyalkene intracule, and we attribute this to delocal-
isation effects. The total exchange energies are

Fig. 3. The exchange intracules for the alkane C H and8 18

polyalkene C H computed with the STO-3G basis. The curves8 10

are normalised to integrate to y1.
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y48.487 and y45.099 E for the alkane andh

polyalkene, respectively, with exchange energy con-
tributions from u)6 bohr of y17 and y27 mE .h

Therefore, although the polyalkene has the smaller
exchange energy, it contains a larger long-range
component.

To explore the effect of delocalisation further, the
exchange intracules for the linear hydrogen and he-

Žlium arrays H and He internuclear separation is50 50
.1.40 bohr in both are given in Fig. 4. These intrac-

ules have been normalised to integrate to y1. For
the delocalised H intracule, the oscillations in the50

tail region are quite noticeable. In contrast, the He50

exchange intracule is considerably more short-range
and lacks the oscillatory signature of delocalisation.
The fractions of exchange energy outside us4 bohr
are 2.0% and 0.01% for H and He , respectively,50 50

clearly indicative of the longer-range nature of the
H intracule.50

Ž . Ž .The STO-3G J u and K u intracules for the
w x Ž .peptide endothelin-1 31 C H N O S are82 121 20 25 5

Ž .given in Fig. 5. This structure PDB ID: 1EDP was

Fig. 4. The exchange intracules for the linear hydrogen and
helium arrays H and He with the STO-3G basis. The curves50 50

are normalised to integrate to y1.

Ž . Ž .Fig. 5. The intracules J u and K u for endothelin-1 with the
STO-3G basis set.

w xobtained from the protein data bank 34,35 . We
have assumed a charge of q1 for the calculations.

Ž .The J u curve for endothelin-1 differs dramatically
from that of C H in that the internuclear peaks8 10

overlap significantly and that it does not contain any
‘special distances’ resulting from high molecular

Ž .symmetry. The K u curves for these systems, de-
spite the presence of a small number of second-row
atoms in endothelin-1, are remarkably similar in the
region around the origin.

6. Conclusions

In this Letter, we have shown how to compute
radial intracule densities and their derivatives using
the PRISM approach. The integral expressions pre-
sented here should enable the computation of both of
these quantities using the PRISM approach for corre-
lated wavefunctions such as CI expansions with
Gaussian-type orbitals. Both the Coulomb and ex-

Ž . Ž .change intracules J u and K u yield information
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Ž .on electronic structure. J u demonstrates the long-
range nature of pairwise charge interactions and
Ž .K u shows that exchange effects are usually short-

ranged with delocalisation introducing distinct struc-
Ž . Ž .ture. Importantly, both J u and K u show which

regions of interelectronic separation u are significant
for the computation of, for example, energies. We
are currently investigating the possibility of estimat-
ing Coulomb and exchange energies directly from
moments and derivatives of their intracules and will
report our results elsewhere.
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