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Coulomb-attenuated exchange energy density functionals
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Exact and local spin density approximation (LSDA) exchange energy
density functionals in the Coulomb-attenuated Schro$ dinger equation (CASE)
approximation are constructed. When expressed as asymptotic series in the
attenuation parameter x , their leading terms are identical. If a Gaussian basis
set is used, the terms in the exact series (but not the LSDA series) can be
evaluated analytically, i.e. without resorting to quadrature on a grid.

1. Introduction

In the last few years, interest has been kindled in the existence and implementation

of algorithms that can compute the total Coulomb energy of a system of n localized

distributions of charge at a computational cost that is only O(n). The availability of

such algorithms [1± 6] has rami® cations for many areas of computational physics but,

in particular, it will expand enormously the range of applicability of density functional

theory (DFT) [7± 9] for, although DFT is recognized as a useful tool for computational

chemistry [10], its application to large systems has been hindered by the same Coulomb

bottleneck that aç icts Hartree± Fock (HF) theory.

We have recently introduced [6] the Coulomb-attenuated Schro$ dinger equation

(CASE), the approximation that results when each Coulomb operator 1 } r in the

Schro$ dinger equation is replaced by the short-range operator erfc ( x r) } r. Erfc is the

complementary error function and x is a tunable parameter. At ® rst glance, the CASE

approxim ation appears very crude but, for a number of reasons [6], it works

surprisingly well in HF and MP2 calculations. It can also be used as a zeroth-order

starting point upon which higher-order theories are based. We develop these elsewhere

[11, 12] and the approach that we take in the present paper is readily extended to

these higher approximations.

We must be careful, however, to be consistent. Attenuating the Coulomb

interaction will lead to meaningful results only if it is done systematically. Since the

Coulomb, exchange and correlation energies all stem from the Coulomb operators in

the Schro$ dinger equation, all three must be attenuated together in any balanced

treatment. In methods based on HF theory, such a balance is maintained automaticall y

because Coulomb, exchange and correlation energies are all treated in terms of two-

electron repulsion integrals. This is not true, however, of DFT schemes in which

exchange and correlation eŒects are treated as functionals of the one-electron

density. Consequently, in order to perform DFT calculations using the CASE

approxim ation, we need appropriately `Coulomb-attenuated ’ density functionals.

Our starting point is the exact expression for the Coulomb-attenuated exchange

energy
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K( x ) ¯ p &
¢

!

s erfc ( x s) & q #
"
(r, s) dr ds, (1)

where q
"
(r, s) is the spherically averaged spinless ® rst-order density matrix. Our

derivations follow those in Chapter 6 of the monograph by Parr and Yang [9]. We

extend our results to the spin-polarize d electron gas via a standard transformation and

use atomic units throughout.

2. Coulomb-attenuated LSDA exchange functional

We begin by generalizing the Dirac exchange functional [13] to a form consistent

with the CASE approximation. The density matrix for the homogeneous gas is given

by

q LDA
"

(r, s) ¯ 3 q (r) 9 sin t ® t cos t

t $ : , (2)

t ¯ k
F
(r) s, (3)

k
F
(r) ¯ [3 p # q (r)] " /$ . (4)

Substitution of (2)± (4) into (1) yields

K
LDA

( x ) ¯
3

4 0 3p 1 "
/ $ & q % / $ (r) &

¢

!

erfc 0 x t

k
F
(r) 1 4(sin t ® t cos t) #

t &
dt dr, (5)

and integration over t then aŒords the spin-compensated exchange functional

K
LDA

( x ) ¯
3

4 0 3p 1 "
/$ & q % /$ F 0 x

k
F
1 dr. (6)

The novel associated function

F( k ) ¯ 1 ®
2 k

3
[2 o p erf ( k Õ " ) ® 3 k - k $ - (2 k ® k $ ) exp ( ® k Õ # )] (7)

is plotted in ® gure 1. The corresponding spin-polarize d exchange functional is given by

K
LSDA

( x ) ¯
3

4 0 6p 1 "
/$ & q % /$r F 0 x

2 " / $ k r

F
1 dr, (8)

where r represents a spin ( a or b ). One of us (R.D.A.) has implemented (8) within the

Q-Chem computer program [14] and the code can perform both self-consistent and

non-self-consistent calculations. The small- x and large- x expansions

K
LSDA

( x ) ¯
3

4 0 6p 1 "
/$ & q % / $r dr ®

x N r

o p
- ¼ , (9)

K
LSDA

( x ) C
p

2 x # & q #r dr ®
6 & /$ p ( /$

80 x % & q ) / $r dr - ¼ , (10)

are easily derived and con® rm that (8) reduces to the spin-polarized Dirac functional

as x ! 0. In contrast, note that the leading term for large x involes the integral of q # ,

rather than q % /$ .
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Figure 1. The function F( k ) de® ned by equation (7).

3. Coulomb-attenuated exact exchange functional

We next derive the exact exchange functional consistent with the CASE

approxim ation. The density matrix for any inhomogeneous system can be formally

expanded [15] as

q #
"
(r, s) ¯ q # (r) ® [4 q (r) s (r) ® q (r) ~ # q (r)]

s #

12
- ¼ , (11)

s (r) ¯ 3
occ

i

r ~ w
i
(r) r # . (12)

Substituting (11) and (12) into (1) easily yields the spin-polarized exact exchange

expansion

K r ( x ) C
p

2 x # & q #r dr ®
p

32 x % & [4 q r s r - r ~ q r r # ] dr - ¼ . (13)

Because the spin orbitals w
i
(r) appear in (13), it is not a density functional in the

purest sense. Nonetheless, practical density functionals containing s (r) are becoming

increasingly common and, in particular, have recently been cleverly exploited by Becke

[16].

Intriguingly, the leading terms in (10) and (13) are identical, from which we deduce

that the LSD exchange approximation is exact when the Coulomb operator is

su� ciently attenuated. This is a rather surprising conclusion for it is true even of

highly inhomogeneous systems.

Before leaving the exact exchange expansion (13), we should make one further

remark. The leading term in the asymptotic series (10) and (13) involves the integral of

q # . This is very signi® cant computationally because, if a Gaussian orbital basis set is

used, this integral (unlike that of q % /$ ) can be evaluated analytically and e� ciently

without resort to numerical quadrature. Furthermore, although they become

progressively more complicated, all of the terms in (13) can be computed in this way.

Our exact exchange expansion is a gridless density functional. Curiously, this is not

true of the LSDA exchange expansion (8), (9) or (10).

4. The hydrogen atom

To illustrate the behaviour of the two new functionals, we consider the ground

state of the H atom, the simplicity of which permits its exchange energy to be written
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Figure 2. The exact and LSDA exchange energies of the Coulomb-attenuated H atom.

in closed form. The atom’ s exact density is q (r) ¯ exp ( ® 2r) } p and, in a Coulomb-

attenuated framework, its exact exchange energy is therefore given by

K( x ) ¯
1

2 & & q (r
"
)
erfc ( x r

" #
)

r
" #

q (r
#
) dr1 dr

#

¯
5

16
® 0 5

16
®

3

8 x #
-

1

4 x %
®

1

6 x ’ 1 exp (1 } x # ) erfc (1 } x ) ® 0 5

8 x
®

1

3 x $
-

1

6 x & 1 1

o p
.

(14)

This is the upper curve in ® gure 2. As would be expected on physical grounds, the

energy decays smoothly from its unattenuated value of 5 } 16 as the parameter x is

increased. We have also found the Coulomb-attenuated LSDA exchange energy by

substituting the H atom density into (8) and evaluating the r integral numerically. This

produces the lower curve in ® gure 2.

At x ¯ 0 (the unattenuated limit), the exact and LSDA energies are 0 ± 3125 and

0 ± 2680, respectively, illustrating the rule of thumb that the LSDA underestimates

exchange energies by roughly 10 %. It is clear from ® gure 2, however, that these

energies approach one another quite rapidly as x increases and are almost identical

beyond x ¯ 1, suggesting that (10) and (13) may be more similar than they appear

super® cially. Indeed, the asymptotic series

K H
LSDA

( x ) C
1

16 x #
®

1

35 ± 698 x %
- ¼ , (15)

K H( x ) C
1

16 x #
®

1

32 x %
- ¼ , (16)

obtained from (10) and (13) using the H atom density, con® rm that the LSDA is a

surprisingly accurate exchange approximation in this (highly inhomogeneous) atom,

even for rather modest values of x .
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