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KWIK: Coulomb Energies in O(N) Work
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We introduce the KWIK algorithm for computing the Coulomb energyNdbcalized charge distributions.
Asymptotically, like the Fast Multipole Method (FMM), the computational cost of the method scales linearly
with N. This scaling can be traced to the Laws of Large Numbers and, in particular, to the statistics of the
two-dimensional random walk. We have implemented the algorithm on a small workstation and applied it
to systems with up to Flcharged particles.

1. Introduction and a long-range part (computed by Fourier summation), shares
Many important problems in computational physics and Some of the features of the traditional Ewald approach and its
chemistry can be treated by methods based on the totalVariantsi®~2*  However, whereas the usefulness of Ewald
interaction energy betweerN well-localized matter distribu- ~ Schemes derives from their exploitation of periodic boundary
tions. In many cases, the distributions interact through a two- conditions, the effectiveness of KWIK depends only on the
particle inverse-square force law (gravitational or Coulombic, Central Limit Theorer#f and therefore increases with As a
for example), and the interaction potential is therefong.1/ ~ consequence, KWIK may be useful in the study of the
Because this is a long-range potential, even widely separategcomplicated aperiodic systems which arise in astrophysical
distributions interact significantly, and straightforward cutoff Simulations, incompressible fluid dynamics, Brownian dynamics,
approximations introduce substantial errors. On the other hand,@nd molecular quantum chemistry.
if E is evaluated exactly by adding explicity computed

contributions from all pairs of distributions in the system, the 2- KWIK Theory

cost of the resulting algorithm will necessarily scqleadrati- We define the energy dfl distributionsQi(r) by
cally with N.
The development of algorithms that treat all pairwise interac- 1NN 1
tions in anN-particle system but whose computational costs E =5 foQi(rl) —|[Q(rp) drydr, —Eg (1)
grow onlylinearly with N has had a profound impact on a wide == !

range of scientific activities. Many of these linear methods,
which stem from seminal wotk# in the mid-1980s, have been
developed by Rokhlin and his collaboratbrd and have since
been applied to problems in molecular dynartiés and N
quantum chemistryt-17 E _1 fo'(H) 1 Q(r,) dr, dr 2)
Although the FMM of Greengard and Rokhlin can be shown s! 2; : ry ! 172
to be linear, its cost (in three dimensions) scales with the fourth
power of the logarithm of the accuracy requiféd. Further-
more, although emerging linear meth&ds based on the Fast ~ removes self-interactions. For convenience later, we assume
Wavelet Transform are likely to be faster than the FMM if that the system is confined tocadimensional cube with side
implemented efficiently, their costs remain substantial. It thus lengthzz. We seek to computE within a relative accuracy.
remains important to search for still faster linear algorithms. ~ Since erfg) is an odd function and esf{ — 1 rapidly asx —
The breathtaking performance of the latest generation of ®,** the identity
computing machines, combined with the “fast” methods, allows
us now to undertake calculations involviNg= O(10°) particles, 1_ erfcwry,) + erf(wry,) 3)

wherery, = r; — rp and the integrations are over all space. If
included, the last term

and future developments will doubtless soon render such heroic ro I (P

achievements routine. Given, however, that such large systems

can now be contemplated, it is intriguing to consider whether separates the interaction potential into a singular but rapidly

very large values dl can actually become an asset, rather than decaying part and a nonsingular but slowly decaying part.

a liability. More specifically, one could speculate that the Laws Substituting (3) into (1) then leads 5= Esport + Eiong Where

of Large Numbers (which underpin the success of statistical

mechanics) ought somehow to be able to be brought to bear on 1N N erfc(or,,)

the present problem. Despite the obvious appeal of such a Esponn™ EZZIIQi(rl) -
1=1]=

Q(rp) drydr, — Eg

proposition, however, we are not aware of any previous attempts Mo @
along these lines.
In this paper, we describe the KWIK algorithm which, in 1N N erf(wry,)
that it partitionsE into a short-range part (computed analytically) Eong = EZZ f f Q(ry [————[Q(rp) drydr, (5)
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8 — " - — - N erfclry) N
Eshort= I

= &

efficiently, we utilize neighbor lists to include only those pairs
of particles whose separation is less than the root of @rfig]
= erqyp. Efficiently computing the long-range energy

)

1 M
Elong ~ EkZQA(k,w) I(k) (10)

is a fascinating problem that depends delicately on the decay
behavior of theA(k,w) I(k).
If erfc(wa) is negligible, it can be shown that

E) 0.5 l 11. 5 2 2 5 3
r
Figure 1. Function 1f and its (10,10) approximation fat = 1.

Akw) = %’El(ﬁ) + 2Ci(k) (11)

this separation of short- and long-range interactions is infinitely
differentiable. Replacing the long-range term in (3) by its
truncated Fourier series expansion yields what we will call the
(M,w) approximation to A,

whereE; and Ci are the exponential integral and cosine integral
functions?® respectively. For smak, the A(k,w) are positive
and, likeE;(k?/4w?), decay approximately exponentially. How-

ever, asymptotic expansidigor E; and Ci can be used to show
1 erfcloryy)

Ty A(k,w) exp(k-r,,) (6) that, beyond
r r K=

oo ke = 20{In(2r%0?)] 2 (12)
Figure 1 depicts the (10,10) approximation éo+= 1. The sum

in (6) then factorizes (5) to yield the Ci term in (11) becomes dominant and &{&,w) begin to

oscillate and decay only &s?2. Figure 2 illustrates this fom
= 10: whereas thé(k,10) decrease by 5 orders of magnitude

= %} Ak, (K) (7) betweenk = 0 andk = 60, it is not untilk = 10 000 that a
ono 2i8=z second such reduction is achieved.
The Fourier transform oj(r) = o(r — r;) is trivial, and one
where immediately obtains
- - 0 = 1S expkr)? 13
100=13 QU =13 [Qu) exptkr) arf*  (8) ”—gwﬁﬂ (13)
= =

. . . . L Figure 3 shows(k) for a random (and typical) arrangement of
is the intensity of the Fourier transform of the total distribution. "= s particles. The key feature is the rapid decay of the

If the Fourier amplitudesA(k,w) and formulae for the o ahh from 162 to a limiting, albeit noisy, value of 0 An
transformgy(k) are available, it requireS(N) work to eva_luate illuminating way in which to understand this behavior is to
Alk,0) I(k). Thus, to the extent thall does not grow witfN, realize that it is intimately connected to the two-dimensional
Eiong can be found ;nO(N) work. The expression f0Esnon random-walk problem. If eachr; is assumed to be a random
apparently involve$\? terms. Howeverg can be chosen large phase, I(K)]Y2 can be interpreted as the net progress of a
enough that any nominated fraction of these terms contributes 4. ,nkard who take unit steps, each in a different random
negligibly to the sum and, in particulan, can be employed 0 irection, on the complex plane. This is known as the Pearson
ensure thaEsnortcan be found irO(N) work. With optimistic random walk in two dimensior®,and it is knowr®-27 that, for
reference to the final four letters in (7), we refer to our method large N, I(k) is an exponential r,andom variable Whos;a mean
asa KWIK algorlth_m. . and standard deviation equsl

The optimal choices ab andM balance the work required Of course, the random-phase assumption is completely false
to computdEshonandEbn.g. If  andM are too small, EXCESSIVe {1 | = 0 and sol(0) = N2 However, ask increases, the
time will be spent findingEsnor  Conversely, if they are 100 555 mption improves and the) decay rapidly before eventu-
large, overmu_ch time will be ex_pended computig,, Th? ally settling down and fluctuating about a mean valueNof
key to choosingw and M well is to use accurate priori Since theA(k,w) drop smoothly but more slowly, it follows that
estimates, as functions af andM, of the timesTsyorrand Tiong the Ak.w) I(k) decay rapidly to roughly N of A(0,») 1(0) and

tﬁ evaludatel_Eshon a?]dg:"’”g'_ Morre]over, since fKW:K k_)ecolr;]ees more slowly thereafter. A felicitous consequence of this is that
the quadratic method at = 0, the strategy of selecting t the series foEng rapidly converges to within a relative error

andM that minimizeTkwik = Tshort - Tiong ensures a continuity  yhich js O(N™Y), and it is this property that most strongly
between the KWIK and quadratic schemes. suggests that KWIK may be especially well suited to the
investigation of very large systems. Indeed, in the sense that
the KWIK solution to the Coulomb problem becomewre
effective asdN grows, KWIK may be viewed as complementary
Our first application of KWIK has been to the one- to the conventional quadratic method.
dimensionalite., d = 1) problem ofN unit-charge particles at To assess KWIK numerically, we have investigated its
random points O< r; < . To compute the short-range energy performance on several randomly chosen ensembles of collinear

3. Collinear Point Charges and a Random Walk in the
Complex Plane
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Figure 2. Function log|A(k,10)| for d = 1.
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Figure 3. Typical Fourier intensity(k) for 10° random-point charges
in (0,7).

TABLE 1: CPU Timings for N Collinear Unit Charge
Particles (€ = 1079)
N TQuad w M Tshort Tlong Tkwik
1000 0.4 100 30 0.2 0.2 0.4
5000 7.8 1000 30 1.0 0.8 1.8
10 000 29.5 3000 25 1.9 1.7 3.6
50 000 706 7500 50 10.0 8.5 18.5
100 000 2810 16 000 50 19.9 17.3 37.2
500 000 70 000 45000 50 114 85.3 199
1000 000 280 000 85000 75 236 178 414
TABLE 2: CPU Timings for N Collinear Unit Charge
Particles (€ = 1079
N TQuad w M Tshort Tlong Trwik
1000 0.4 140 300 0.3 0.2 0.5
5000 7.8 250 490 1.5 1.3 2.8
10 000 295 400 700 3.2 2.9 6.1
50 000 706 1000 1600 23.7 22.5 46.2
100 000 2810 2300 1800 44.2 48.6 92.8
500 000 70 000 9000 2300 267 294 561
1000 000 280 000 24000 1900 454 505 959

particles. We have explored & N < 10f and 10° < ¢ <
1071% and have adjusted andM manually to minimizeTxwik

= Tshot + Tiong: The resulting CPU timings on an IBM RS/
6000 Model 355 workstation, together with tiig,aq obtained

Dombroski et al.
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Figure 4. CPU time to compute the energy Nfpoint chargesd =
1) using the quadratic method and the KWIK method with various
accuracies.
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Figure 5. CPU time vs accuracy to compute the energyNopoint
chargesd = 1).

TABLE 3: CPU Timings for N Collinear Unit Charge
Particles (€ = 1078)

N TQuad w M Tshort Tlong Tkwik
1000 0.4 100 600 0.3 0.4 0.7
5000 7.8 190 950 1.9 1.8 3.7
10 000 295 300 1500 4.2 4.5 8.7
50 000 706 730 3050 33.9 35.8 69.7
100 000 2810 1100 4300 85.9 93.2 179
500000 70000 2800 10000 783 1000 1780
1000 000 280 000 4150 14000 2100 2660 4760

measurements reveal that the computational cost of KWIK
grows roughly asN-3whenN < 1/e but only asN whenN >
1/e. On this basis, we may conclude that KWIK is @x{N)
method and, furthermore, that it performs best when Bdth
ande are large.

How can these empirical observations be rationalized? The
key is the “random-walk” property dfk) discussed above. As
k increases, thi{k) decrease rapidly to approximatelyNLof
1(0) but then remain more or less constant. Because of this, it

using an optimized quadratic program, are summarized in Tablesrequires comparatively few terms in tEgng Sum to achieve a

1-3 and Figures 4 and 5.

The raw data in Tables-13 show how the cost of KWIK
increases withN for fixed e. Figure 4 shows loglog plots of
Tkwik and Touad againstN.  As one would expect, th&gyad
graph is linear with a slope of tweas befits a quadratic method.
In contrast, we find that the slopes of theyix curves are rather
greater than one for small but tend to one aNl grows. Precise

relative accuracy of N. However, if greater accuracy than
this is required, we must depend on the (much more slowly
decaying) amplitudes(k,w) to converge thdggng Sum.

The number of collinear particles beyond which the KWIK
algorithm becomes faster than the quadratic method can be seen
directly from Figure 4. Although the exact point depends on
the value of used (and, of course, implementational details in
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Figure 6. CPU time to compute the energy Nfpoint chargesd = ol ‘ ) ‘
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Figure 7. CPU time to compute the energyMfpoint charges showing

both the KWIK and quadratic programs), it is clear that the the effects of varying accuracy and varying dimensionality.

crossover occurs at roughly 1008000 particles fok values o i )
of interest to us. Similar crossover points have been féund ©Ptimized. The key observation, however, is that, as we found
when comparing the quadratic and fast multipole methods. To In the 1-D tests, the KWIK timings increase superlinearly for
put this in perspective, we note that the only problems for which N = 1/e aﬂd Ilngarly thereafter.
the quadratic method is faster than KWIK are ones which, on  Finally, in Figure 7, we directly compare our 1-D and
a modern workstation, take less than 1 CPU s anyway. It may (Unoptimized) 3-D CPU timings. We observe that, unlike the
reasonably be inferred from this that the quadratic method is FMM®® which is very much more expensive in 3-D than 1-D,
more or less obsolete. the cost of KWIK appears to increase rather slowly with the
Figure 5 shows loglog plots of Tewik against for various ~ System dimensionality.
values qu. It is evident that improving the error inaKWIK g Concluding Remarks
calculation, even by several orders of magnitude, can be
achieved at a fairly modest additional cost. It is also apparent
that KWIK calculations become very inexpensive when large
errors can be tolerated.

In this paper, we have given a preliminary account of the
KWIK algorithm, a novel solution to the Coulomb problem of
N charge distributions. We have shown that, for a fixed relative
accuracye, the computational cost of KWIK i©(N). This
asymptotic linear scaling behavior is observed in practice for
N > 1/e. In this sense, large values Nfactually become an

Applying KWIK to three-dimensional ensembles of point asset, not a liability, for the same Laws of Large Numbers that
charges is a straightforward extension of the linear case. Inunderpin the success of statistical mechanics, used to advantage

4. Point Charges in Three Dimensions

order to demonstrate this, we have studied collectiorié wdit by KWIK. We find that KWIK is faster than the conventional
charges at random points in the cubic box 0< x,y,z < 7. quadratic approach for all but very small problems.
The qualitative behavior of KWIK is similar for one-dimensional KWIK can be applied to localized continuous charge distribu-

(1-D) and three-dimensional (3-D) systems, and to avoid an tions (such as arise in ab initio molecular orbital theory), and
unilluminating repetition of the foregoing section, our discussion e are currently examining its usefulness in computinghe
of the 3-D case will be terse. matrix, the infamous bottleneck in HartreBock or Kohn-

A compact formula, analogous to (11), for the 3-D Fourier Sham self-consistent field (SCF) calculations. There are strong
amplitudesA(k,w) is difficult to obtain, and we have therefore indications that the guadratic approacheseeminent in quan-
resorted to quadrature to evaluate these. This is not entirelytym chemistry for half a centurymay soon be displaced. We
satisfactory, and we will discuss more efficient generation of il report our findings and comparisons with the CFNiMn
the amplitudes elsewhef&. As in the 1-D case, th&(k,w) the near futur@®
decay rapidly at first with increasingk| and more slowly
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