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We introduce the KWIK algorithm for computing the Coulomb energy ofN localized charge distributions.
Asymptotically, like the Fast Multipole Method (FMM), the computational cost of the method scales linearly
with N. This scaling can be traced to the Laws of Large Numbers and, in particular, to the statistics of the
two-dimensional random walk. We have implemented the algorithm on a small workstation and applied it
to systems with up to 106 charged particles.

1. Introduction

Many important problems in computational physics and
chemistry can be treated by methods based on the total
interaction energyE betweenN well-localized matter distribu-
tions. In many cases, the distributions interact through a two-
particle inverse-square force law (gravitational or Coulombic,
for example), and the interaction potential is therefore 1/rij.
Because this is a long-range potential, even widely separated
distributions interact significantly, and straightforward cutoff
approximations introduce substantial errors. On the other hand,
if E is evaluated exactly by adding explicitly computed
contributions from all pairs of distributions in the system, the
cost of the resulting algorithm will necessarily scalequadrati-
cally with N.
The development of algorithms that treat all pairwise interac-

tions in anN-particle system but whose computational costs
grow only linearlywith N has had a profound impact on a wide
range of scientific activities. Many of these linear methods,
which stem from seminal work1-4 in the mid-1980s, have been
developed by Rokhlin and his collaborators4-11 and have since
been applied to problems in molecular dynamics12,13 and
quantum chemistry.14-17

Although the FMM of Greengard and Rokhlin can be shown
to be linear, its cost (in three dimensions) scales with the fourth
power of the logarithm of the accuracy required.6,18 Further-
more, although emerging linear methods8-11 based on the Fast
Wavelet Transform are likely to be faster than the FMM if
implemented efficiently, their costs remain substantial. It thus
remains important to search for still faster linear algorithms.
The breathtaking performance of the latest generation of

computing machines, combined with the “fast” methods, allows
us now to undertake calculations involvingN) O(106) particles,
and future developments will doubtless soon render such heroic
achievements routine. Given, however, that such large systems
can now be contemplated, it is intriguing to consider whether
very large values ofN can actually become an asset, rather than
a liability. More specifically, one could speculate that the Laws
of Large Numbers (which underpin the success of statistical
mechanics) ought somehow to be able to be brought to bear on
the present problem. Despite the obvious appeal of such a
proposition, however, we are not aware of any previous attempts
along these lines.
In this paper, we describe the KWIK algorithm which, in

that it partitionsE into a short-range part (computed analytically)

and a long-range part (computed by Fourier summation), shares
some of the features of the traditional Ewald approach and its
variants.19-23 However, whereas the usefulness of Ewald
schemes derives from their exploitation of periodic boundary
conditions, the effectiveness of KWIK depends only on the
Central Limit Theorem24 and therefore increases withN. As a
consequence, KWIK may be useful in the study of the
complicated aperiodic systems which arise in astrophysical
simulations, incompressible fluid dynamics, Brownian dynamics,
and molecular quantum chemistry.

2. KWIK Theory

We define the energy ofN distributionsQi(r ) by

wherer12 ≡ r1 - r2 and the integrations are over all space. If
included, the last term

removes self-interactions. For convenience later, we assume
that the system is confined to ad-dimensional cube with side
lengthπ. We seek to computeE within a relative accuracyε.
Since erf(x) is an odd function and erf(x) f 1 rapidly asxf

∞,25 the identity

separates the interaction potential into a singular but rapidly
decaying part and a nonsingular but slowly decaying part.
Substituting (3) into (1) then leads toE ) Eshort+ Elong where

Note that, unlike the boxing schemes of the fast methods,1,2,5,6
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this separation of short- and long-range interactions is infinitely
differentiable. Replacing the long-range term in (3) by its
truncated Fourier series expansion yields what we will call the
(M,ω) approximation to 1/r12

Figure 1 depicts the (10,10) approximation ford) 1. The sum
in (6) then factorizes (5) to yield

where

is the intensity of the Fourier transform of the total distribution.
If the Fourier amplitudesA(k,ω) and formulae for the

transformsQ̂j(k) are available, it requiresO(N)work to evaluate
A(k,ω) I(k). Thus, to the extent thatM does not grow withN,
Elong can be found inO(N) work. The expression forEshort
apparently involvesN2 terms. However,ω can be chosen large
enough that any nominated fraction of these terms contributes
negligibly to the sum and, in particular,ω can be employed to
ensure thatEshort can be found inO(N)work. With optimistic
reference to the final four letters in (7), we refer to our method
as a KWIK algorithm.
The optimal choices ofω andM balance the work required

to computeEshortandElong. If ω andM are too small, excessive
time will be spent findingEshort. Conversely, if they are too
large, overmuch time will be expended computingElong. The
key to choosingω and M well is to use accuratea priori
estimates, as functions ofω andM, of the timesTshort andTlong
to evaluateEshort andElong. Moreover, since KWIK becomes
the quadratic method atω ) 0, the strategy of selecting theω
andM that minimizeTKWIK ) Tshort+ Tlong ensures a continuity
between the KWIK and quadratic schemes.

3. Collinear Point Charges and a Random Walk in the
Complex Plane

Our first application of KWIK has been to the one-
dimensional (i.e., d ) 1) problem ofN unit-charge particles at
random points 0< ri < π. To compute the short-range energy

efficiently, we utilize neighbor lists to include only those pairs
of particles whose separation is less than the root of erfc(ωr12)
) εr12. Efficiently computing the long-range energy

is a fascinating problem that depends delicately on the decay
behavior of theA(k,ω) I(k).
If erfc(ωπ) is negligible, it can be shown that

whereE1 and Ci are the exponential integral and cosine integral
functions,25 respectively. For smallk, theA(k,ω) are positive
and, likeE1(k2/4ω2), decay approximately exponentially. How-
ever, asymptotic expansions25 for E1 and Ci can be used to show
that, beyond

the Ci term in (11) becomes dominant and theA(k,ω) begin to
oscillate and decay only ask-2. Figure 2 illustrates this forω
) 10: whereas theA(k,10) decrease by 5 orders of magnitude
betweenk ) 0 andk ) 60, it is not untilk ) 10 000 that a
second such reduction is achieved.
The Fourier transform ofQj(r) ) δ(r - rj) is trivial, and one

immediately obtains

Figure 3 showsI(k) for a random (and typical) arrangement of
N ) 106 particles. The key feature is the rapid decay of the
graph from 1012 to a limiting, albeit noisy, value of 106. An
illuminating way in which to understand this behavior is to
realize that it is intimately connected to the two-dimensional
random-walk problem. If eachkrj is assumed to be a random
phase, [I(k)]1/2 can be interpreted as the net progress of a
drunkard who takesN unit steps, each in a different random
direction, on the complex plane. This is known as the Pearson
random walk in two dimensions,24 and it is known26,27that, for
largeN, I(k) is an exponential random variable whose mean
and standard deviation equalN.
Of course, the random-phase assumption is completely false

for k ) 0 and soI(0) ) N2. However, ask increases, the
assumption improves and theI(k) decay rapidly before eventu-
ally settling down and fluctuating about a mean value ofN.
Since theA(k,ω) drop smoothly but more slowly, it follows that
theA(k,ω) I(k) decay rapidly to roughly 1/N of A(0,ω) I(0) and
more slowly thereafter. A felicitous consequence of this is that
the series forElong rapidly converges to within a relative error
which is O(N-1), and it is this property that most strongly
suggests that KWIK may be especially well suited to the
investigation of very large systems. Indeed, in the sense that
the KWIK solution to the Coulomb problem becomesmore
effective asN grows, KWIK may be viewed as complementary
to the conventional quadratic method.
To assess KWIK numerically, we have investigated its

performance on several randomly chosen ensembles of collinear

Figure 1. Function 1/r and its (10,10) approximation ford ) 1.
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particles. We have explored 102 e N e 106 and 10-3 e ε e
10-10 and have adjustedω andM manually to minimizeTKWIK

) Tshort + Tlong. The resulting CPU timings on an IBM RS/
6000 Model 355 workstation, together with theTQuadobtained
using an optimized quadratic program, are summarized in Tables
1-3 and Figures 4 and 5.
The raw data in Tables 1-3 show how the cost of KWIK

increases withN for fixed ε. Figure 4 shows log-log plots of
TKWIK and TQuad againstN. As one would expect, theTQuad
graph is linear with a slope of twosas befits a quadratic method.
In contrast, we find that the slopes of theTKWIK curves are rather
greater than one for smallN but tend to one asN grows. Precise

measurements reveal that the computational cost of KWIK
grows roughly asN1.3 whenN < 1/ε but only asN whenN >
1/ε. On this basis, we may conclude that KWIK is anO(N)
method and, furthermore, that it performs best when bothN
andε are large.
How can these empirical observations be rationalized? The

key is the “random-walk” property ofI(k) discussed above. As
k increases, theI(k) decrease rapidly to approximately 1/N of
I(0) but then remain more or less constant. Because of this, it
requires comparatively few terms in theElong sum to achieve a
relative accuracy of 1/N. However, if greater accuracy than
this is required, we must depend on the (much more slowly
decaying) amplitudesA(k,ω) to converge theElong sum.
The number of collinear particles beyond which the KWIK

algorithm becomes faster than the quadratic method can be seen
directly from Figure 4. Although the exact point depends on
the value ofε used (and, of course, implementational details in

Figure 2. Function log|A(k,10)| for d ) 1.

Figure 3. Typical Fourier intensityI(k) for 106 random-point charges
in (0,π).

TABLE 1: CPU Timings for N Collinear Unit Charge
Particles (E ) 10-3)

N TQuad ω M Tshort Tlong TKWIK

1 000 0.4 100 30 0.2 0.2 0.4
5 000 7.8 1 000 30 1.0 0.8 1.8
10 000 29.5 3 000 25 1.9 1.7 3.6
50 000 706 7 500 50 10.0 8.5 18.5
100 000 2 810 16 000 50 19.9 17.3 37.2
500 000 70 000 45 000 50 114 85.3 199
1000 000 280 000 85 000 75 236 178 414

TABLE 2: CPU Timings for N Collinear Unit Charge
Particles (E ) 10-5)

N TQuad ω M Tshort Tlong TKWIK

1 000 0.4 140 300 0.3 0.2 0.5
5 000 7.8 250 490 1.5 1.3 2.8
10 000 29.5 400 700 3.2 2.9 6.1
50 000 706 1 000 1600 23.7 22.5 46.2
100 000 2 810 2 300 1800 44.2 48.6 92.8
500 000 70 000 9 000 2300 267 294 561
1000 000 280 000 24 000 1900 454 505 959

Figure 4. CPU time to compute the energy ofN point charges (d )
1) using the quadratic method and the KWIK method with various
accuracies.

Figure 5. CPU time vs accuracy to compute the energy ofN point
charges (d ) 1).

TABLE 3: CPU Timings for N Collinear Unit Charge
Particles (E ) 10-8)

N TQuad ω M Tshort Tlong TKWIK

1 000 0.4 100 600 0.3 0.4 0.7
5 000 7.8 190 950 1.9 1.8 3.7
10 000 29.5 300 1 500 4.2 4.5 8.7
50 000 706 730 3 050 33.9 35.8 69.7
100 000 2 810 1100 4 300 85.9 93.2 179
500 000 70 000 2800 10 000 783 1000 1780
1000 000 280 000 4150 14 000 2100 2660 4760
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both the KWIK and quadratic programs), it is clear that the
crossover occurs at roughly 1000-3000 particles forε values
of interest to us. Similar crossover points have been found6

when comparing the quadratic and fast multipole methods. To
put this in perspective, we note that the only problems for which
the quadratic method is faster than KWIK are ones which, on
a modern workstation, take less than 1 CPU s anyway. It may
reasonably be inferred from this that the quadratic method is
more or less obsolete.
Figure 5 shows log-log plots ofTKWIK againstε for various

values ofN. It is evident that improving the error in a KWIK
calculation, even by several orders of magnitude, can be
achieved at a fairly modest additional cost. It is also apparent
that KWIK calculations become very inexpensive when large
errors can be tolerated.

4. Point Charges in Three Dimensions

Applying KWIK to three-dimensional ensembles of point
charges is a straightforward extension of the linear case. In
order to demonstrate this, we have studied collections ofN unit
charges at random pointsr i in the cubic box 0< x,y,z< π.
The qualitative behavior of KWIK is similar for one-dimensional
(1-D) and three-dimensional (3-D) systems, and to avoid an
unilluminating repetition of the foregoing section, our discussion
of the 3-D case will be terse.
A compact formula, analogous to (11), for the 3-D Fourier

amplitudesA(k,ω) is difficult to obtain, and we have therefore
resorted to quadrature to evaluate these. This is not entirely
satisfactory, and we will discuss more efficient generation of
the amplitudes elsewhere.28 As in the 1-D case, theA(k,ω)
decay rapidly at first with increasing|k| and more slowly
thereafter. They are especially small whenkx, ky, andkz are all
large. The 3-D intensity

behaves similarly to its 1-D analogue (13), falling dramatically
from I(0) ) N2 to fluctuate aroundN as |k| becomes large.
Again, this can be understood in terms of a 2-D Pearson walk.
Figure 6 shows plots of CPU times againstN for variousε

for this 3-D problem. The crossover points (at which KWIK
becomes faster than the quadratic method) occur at higherN
values than in the 1-D calculations, but this is mainly a
consequence of the fact that our 3-D KWIK program is not yet

optimized. The key observation, however, is that, as we found
in the 1-D tests, the KWIK timings increase superlinearly for
N < 1/ε and linearly thereafter.
Finally, in Figure 7, we directly compare our 1-D and

(unoptimized) 3-D CPU timings. We observe that, unlike the
FMM5,6 which is very much more expensive in 3-D than 1-D,
the cost of KWIK appears to increase rather slowly with the
system dimensionalityd.

5. Concluding Remarks
In this paper, we have given a preliminary account of the

KWIK algorithm, a novel solution to the Coulomb problem of
N charge distributions. We have shown that, for a fixed relative
accuracyε, the computational cost of KWIK isO(N). This
asymptotic linear scaling behavior is observed in practice for
N > 1/ε. In this sense, large values ofN actually become an
asset, not a liability, for the same Laws of Large Numbers that
underpin the success of statistical mechanics, used to advantage
by KWIK. We find that KWIK is faster than the conventional
quadratic approach for all but very small problems.
KWIK can be applied to localized continuous charge distribu-

tions (such as arise in ab initio molecular orbital theory), and
we are currently examining its usefulness in computing theJ
matrix, the infamous bottleneck in Hartree-Fock or Kohn-
Sham self-consistent field (SCF) calculations. There are strong
indications that the quadratic approachesspreeminent in quan-
tum chemistry for half a centurysmay soon be displaced. We
will report our findings and comparisons with the CFMM17 in
the near future.28
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