
Volume 206, number 1,2,3,4 CHEMICAL PHYSICS LETTERS 30 April 1993

An improved criterion for evaluating the efficiency
of two-electron integral algorithms

Michael J. Frisch
Lorentzian. Inc., 127 Washington Avenue, North Haven, CT 06473, USA

Benny G. Johnson, Peter M.W. Gill
Department of Chemistry Carnegie Mellon University, Pittsburgh, PA 15213, USA

Douglas J. Fox
Gaussian, Inc., 4415 Fift Avenue, Pittsburgh, PA 15213, USA

and

Ross H. Nobes
Australian National University Supercomputer Facility, GPO Box 4, Canberra ACT 2601. Australia

Received 3 I December 1992; in final form 15 February 1993

We present a general criterion for theoretical performance assessment of algoritlnns for twoelectron integral computation which
is appropriate for most modern computers. The new prescription is to minimize the total number of memory references in the
algorithm, as opposed to the traditional approach of minimizing the total number of floating-point operations. CPU timings on a
range of machines demonstrate that memory operations are better correlated to machine cycles than are floating-point operations.

1. Introduction

Efficient computation of the ubiquitous twoelec-
tron repulsion integral (ERI) in ab initio quantum
chemical calculations has long been a topic which has
received much attention in the research literature [l-
141. In Hartree-Fock calculations the number of
ERIs which must be computed is formally 0(N4),
where N is the number of basis functions. For large
calculations where the disk space required to store
the ERIs is prohibitive, a “direct” method, in which
the ERIs are recomputed each time they are needed,
must be used. As ERI evaluation is the dominant step
in such a procedure, in order for direct methods to
be feasible, highly optimized algorithms for ERI gen-
eration are required.

In addressing the issue of designing an ERI algo-
rithm for which the computer implementation will

be optimal, it is obvious that the ultimate criterion
is that the total number of machine cycles required
must be minimized. However, optimizing machine
cycles is undesirable because the solution is highly
machine dependent, which is contrary to the pref-
erable notion of designing a single algorithm which
performs efficiently on all machines of interest. Ac-
cordingly, we seek a general cost parameter which
gives a good approximation to machine cycles on
most machines.

In order to take maximum advantage of vector ar-
chitectures, it is desirable that as much as possible of
the computationally intensive work in the algorithm
be performed inside iterative loops which simply add
and multiply elements of long arrays (vectors), and
we shall focus our attention on these sorts of con-
structs. Traditionally, the theoretical measure of the
cost of an algorithm has been the total number of

0009-2614/93/$ 06.00 0 1993 Elsevier Science Publishers B.V. All rights reserved. 225

Volume 206, number 1,2,3,4 CHEMICAL. PHYSICS LETTERS 30 April 1993

floating-point operations, or flops (additions, sub-
tractions, multiplications, and divisions), and al-
gorithms requiring the fewest flops were considered
optimal [151. Kowever, this does not give the best
indication of machine cycles on many modern com-
puters which are capable of loading or storing a float-
ing-point number from or to memory, completing a
multiplication, and completing an addition in one
machine cycle. In this case, the cost C in machine
cycles of executing a program statement performing
only these types of operations is given by

C=MAX(L+S, M,A) , (1)

where L+S is the total number of loads and stores,
A4 is the number of multiplications, and A is the
number of additions in the statement.

We therefore propose that the appropriate cost pa-
rameter for theoretical performance assessment of
ERI algorithms is C. This cost parameter is exact for
machines of the type described above (neglecting the
comparatively few cycles required for tasks such as
maintaining loop counters), whereas the number of
flops (=M+A) is a poorer measure of CPU time
since memory references are ignored. Indeed, since
multiplication and addition are binary operations,
for practical purposes it will almost always be the case
that L+S is greater than M or A, and memory op
erations, not flops, will be the determining factor for
CPU time consumed on such machines. Henceforth,
we shall take C to be equal to L t S, the total number
of memory operations, or mops. In the remainder of
this paper, we establish the utility of mops as a cost
parameter, by demonstrating that machine cycles are
better correlated to mops than to flops over a wide
variety of machines. In subsequent Letters [16,171,
it will be illustrated how the minimum-mops opti-
mality criterion is applied to representative inter-
mediate steps in an ERI algorithm, with the results
compared with currently used methods.

Before proceeding, we note some other relevant
work in this area. The importance of mops has been
recognized in the computer literature by, for exam-
ple, Dongarra [181, who writes: “Algorithm per-
formance can be dominated by the amount of mem-
ory traffic rather than by the number of floating-point
operations involved”. Other consideration of theo-
retical performance metrics involves two-parameter
representations [19,201; however, here we use only

226

the single parameter mops, as this avoids the addi-
tional complexity in algorithm optimization re-
quired by consideration of multiple parameters, and
also because considerable improvement over flops
can be obtained simply by using an improved single-
parameter metric. It should be noted, however, that
while the rationale behind advocating mops is ap-
propriate for a single-processor vector architecture
model, when designing algorithms for parallel ar-
chitectures more sophisticated considerations which
are highly machine-dependent are necessary, as has
been pointed out, for example, by Colvin, Whiteside
and Schaefer [2 11.

2. Correlation of machine cycles and mops

In table 1 are listed several abstract formulae which
represent recurrence relation transformations com-
monly appearing in ERI algorithms [11,141. For
each, the cost in flops and mops is given in the first
column. The determination of the flop costs is
straightforward, as it is simply the total number of
additions and multiplications in the formula. In de-
termining the mop costs, real constants, denoted by
lower-case letters, are loop invariants and should not
be counted, and it is assumed that any variable ap-
pearing more than once on the right-hand side is
loaded into a storage register where it may subse-
quently be rapidly accessed as needed, and thus each
distinct variable is counted only once. The remain-
ing columns give the average number of machine
cycles elapsed per operation performed for a vrariety
of machines.

We find that the average number of machine cycles
per mop is more constant over the given set of for-
mulae than the number of cycles per flop for most of
the machines in table 1, excepting the VAX station
3 100, for which neither flops nor mops give a good
correlation with machine cycles. This is expected
since the VAX station 3 100 is a scalar sequential ma-
chine, i.e. its architecture is not at all similar to that
implying eq. (1). A more appropriate definition of
C for this machine would be L + M+A.

The cycles per mop values on the Cray Y-MP/832
and Fujitsu VP-100 for the next-to-last formula are
relatively high, and merit elaboration. These ma-
chines are capable of completing up to two mops, an

Volume 206, number 1,2,3,4 CHEMICAL PHYSICS LETTERS

Table 1
Theoretical costs and machine cycles per operation for various formulae

30 April 1993

Formula Cost Machine cycles/operation ‘)

VAX station Ahiant Multiflow Cray Fujitsu
3100 FXf8 Trace 14/300 Y-MP/832 VP-100

W= W+A
flops 1 41 7.0 1.2 1.6 1.9
mops 3 14 2.3 0.39 0.54 0.63

W= WfA +B
flops 2 31 4.9 0.78 1.1 1.2
mops 4 15 2.5 0.39 0.57 0.60

W=W+AtB+C
flops 3 29 4.1 0.66 I.1 1.1
mops 5 17 2.5 0.40 0.66 0.64

W=A+XB
flops 2 34 4.7 0.78 1.2 1.2
mops 4 17 2.3 0.39 0.59 0.58

W=A tXBt YC
flops 4 35 4.2 0.65 1.0 0.86
mops 6 23 2.8 0.43 0.67 0.57

W=AtX(BtYC)+YD
flops 6 27 3.2 0.49 0.75 0.69
mops 7 23 2.8 0.42 0.64 0.59

W=MtYBtmCtnD
flops 7 24 2.9 0.52 0.71 0.60
mops 7 24 2.9 0.52 0.71 0.60

W=A+X[mBtX(nCtXD)]
flops 8 22 2.0 0.44 0.67 0.66
mops 6 29 2.7 0.58 0.89 0.88

W=.4tX[BtY(CtZD)tZE]tY(F+ZG)+ZB
flops 14 25 2.9 0.46 0.65 0.62
mops 12 29 3.3 0.54 0.75 0.72

a) Each formula was coded inside a FORTRAN DO loop oflength 1000, which was compiled at high optimization and executed sufficiently
many times to accumulate one CPU second on each machine (one processor, vector mode where applicable). The ratios were calculated
from these timings.

add and a multiply in one cycle, so eq. (1) is not
strictly valid for them. For the formula in question,
these machines will actually be rate-limited by mul-
tiplications, not mops. This shows that the mini-
mum-mops criterion should not be applied indis-
criminately, but the fact that the ratio is nearly
constant for the rest of the set of formulae illustrates
the usefulness of the simple cost parameter mops: it
is successful in approximating machine cycles even
for some architectures where it is not the most ap-
propriate cost parameter possible.

Therefore, it is established that optimizing an al-
gorithm with respect to mops is an excellent ap-
proximation to optimizing machine cycles, and that
this is superior to optimizing the total number of

flops. Furthermore, the observed constant ratios as-
sert the validity of the assumption implicit in the
counting scheme used, namely that an adequate
number of registers are available so that a sufE-
ciently resourceful compiler need load each distinct
variable only once. Since the number of registers as
well as compiler skill is finite, this assumption can-
not continue to hold as formulae become more and
more complicated, and we notice a slight increase in
cycles/mop on most machines for the more compli-
cated formulae at the bottom of table 1, but it is im-
portant to note that the assumption does generally
hold for the formulae studied here, most of which
are actually implemented in the PRISM ERI algo-
rithm [11,141. Certain of these formulae are dis-

227

Volume 206, number I ,2,3,4 CHEMICAL PHYSICS LETTERS 30 April 1993

cussed in detail in a following Letter [161.

3. Concluding remarks

We have demonstrated that total mops is a better
cost parameter for theoretical performance assess-
ment of ERI algorithms than total flops due to the
better correlation of machine cycles to mops on most
modem computers. Therefore, when designing ERI
algorithms, the total number of mops should be op-
timized. The minimum-mops optimality criterion
can be applied to both the basic types of individual
steps comprising most ERI algorithms, contraction
and transformation, to yield improvements in CPU
time required [16,171. It should be stressed that such
improvements are obtained by methods of reducing
total mops which do not necessarily correspond to
minimizing or even reducing the total number of
flops; indeed, it is sometimes the case that the min-
imum-mops implementation of a particular task is
much more expensive in terms of flops than an im-
plementation which is inferior in performance [161.

Finally, we point out that although the use of mops
as p theoretical cost measure is advocated here in the
cantext of optimizing ERI algorithms, the utility of
such optimization procedures is not limited to this
area; it is expected that the efficiency of algorithms
in other areas of computational science which are
currently optimized with respect to flops can be im-
proved by applying the minimum-mops criterion.

Acknowledgement

This work was supported by the National Science
Foundation under Grant CHEM-8918623. Profes-
sor John Pople is kindly acknowledged for his com-
ments on this manuscript. We are indebted to the

referee for bringing refs. [18-2 1] to our attention.
BGJ thanks the Mellon College of Science for a
Graduate Fellowship.

References

[l] H.F. Ring and M. Dupuis, J. Comput. Phys. 21 (1976) 144.
[2] L.E. McMurchie and E.R. Davidson, J. Comput. Phys. 26

(1978) 218.
[3] J. Rys, M. Dupuis and H.F. Ring, J. Comput. Chem. 4

(1983) 154.
[41 S. Obara and A. Saika, J. Chem. Phys. 84 (1986) 3963.
[51 M. Head-Gordon and J.A. Pople, J. Chem. Phys. 89 (1988)

5777.
[6] P.M.W. Gill, M. Head-Gordon and J.A. Pople, Intern. J.

Quantum Chem. Symp. 23 (1989) 269.
[71 P.M.W. Gill, M. Head-Gordon and J.A. Pople, J. Phys.

Chem. 94 (1990) 5564.
[8] T.P. Hamilton and H.F. Schaefer III, Chem. Phys. 150

(1991) 163.
[9] R. Lindh, U. Ryu and B. Liu, J. Chem. Phys. 95 (1991)

5889.
[IO] I. Panas,Cheor. Phys. Letters 184 (1991) 86.
[1 l] P.M.W. Gill and J.A. Pople, Intern. J. Quantum Chem. 40

(1991) 753.
[12lP.M.W. Gill, B.G. Johnson and J.A. Pople, Intern. J.

Quantum Chem. 40 (1991) 745.
[131 B.G. Johnson, P.M.W. Gill and J.A. Pople, Intern. J.

Quantum Chem. 40 (1991) 809.
[141 P.M.W. Gill, Advan. Quantum Chem., in press.
[151 D. Hegarty and G. Van der Velde, Intern. J. Quantum Cbem.

23 (1983) 1135.
116lB.G. Johnson, P.M.W. Gill and J.A. Pople, Chem. Phys.

Letters 206 (1993) 229.
[17]B.G.Johnson,P.M.W.Gill,J.A.PopleandD.J.Fox,Chem.

Phys. Letters 206 (1993) 239.
[181 J.J. Dongarra, Technical Memorandum No. 23,

Mathematics and Computer Science Division, Argonne
National Laboratory (1988).

[191 R.W. Hackney and C.R. Jesshope, Parallel Computers
(Adam Hilger, Bristol, 198 1) .

[201 R.W. Hackney, Supercomputer 48 (1992) 9.
[2 1] M.E. Colvin, R.A. Whiteside and H.F. Schaefer 111, Methods

Comput. Chem. 3 (1989) 167.

228

