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We present a general criterion for theoretical performance assessment of algoritlnns for twoelectron integral computation which 
is appropriate for most modern computers. The new prescription is to minimize the total number of memory references in the 
algorithm, as opposed to the traditional approach of minimizing the total number of floating-point operations. CPU timings on a 
range of machines demonstrate that memory operations are better correlated to machine cycles than are floating-point operations. 

1. Introduction 

Efficient computation of the ubiquitous twoelec- 
tron repulsion integral (ERI) in ab initio quantum 
chemical calculations has long been a topic which has 
received much attention in the research literature [ l- 
141. In Hartree-Fock calculations the number of 
ERIs which must be computed is formally 0(N4), 
where N is the number of basis functions. For large 
calculations where the disk space required to store 
the ERIs is prohibitive, a “direct” method, in which 
the ERIs are recomputed each time they are needed, 
must be used. As ERI evaluation is the dominant step 
in such a procedure, in order for direct methods to 
be feasible, highly optimized algorithms for ERI gen- 
eration are required. 

In addressing the issue of designing an ERI algo- 
rithm for which the computer implementation will 

be optimal, it is obvious that the ultimate criterion 
is that the total number of machine cycles required 
must be minimized. However, optimizing machine 
cycles is undesirable because the solution is highly 
machine dependent, which is contrary to the pref- 
erable notion of designing a single algorithm which 
performs efficiently on all machines of interest. Ac- 
cordingly, we seek a general cost parameter which 
gives a good approximation to machine cycles on 
most machines. 

In order to take maximum advantage of vector ar- 
chitectures, it is desirable that as much as possible of 
the computationally intensive work in the algorithm 
be performed inside iterative loops which simply add 
and multiply elements of long arrays (vectors), and 
we shall focus our attention on these sorts of con- 
structs. Traditionally, the theoretical measure of the 
cost of an algorithm has been the total number of 
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floating-point operations, or flops (additions, sub- 
tractions, multiplications, and divisions), and al- 
gorithms requiring the fewest flops were considered 
optimal [ 151. Kowever, this does not give the best 
indication of machine cycles on many modern com- 
puters which are capable of loading or storing a float- 
ing-point number from or to memory, completing a 
multiplication, and completing an addition in one 
machine cycle. In this case, the cost C in machine 
cycles of executing a program statement performing 
only these types of operations is given by 

C=MAX(L+S, M,A) , (1) 

where L+S is the total number of loads and stores, 
A4 is the number of multiplications, and A is the 
number of additions in the statement. 

We therefore propose that the appropriate cost pa- 
rameter for theoretical performance assessment of 
ERI algorithms is C. This cost parameter is exact for 
machines of the type described above (neglecting the 
comparatively few cycles required for tasks such as 
maintaining loop counters), whereas the number of 
flops ( =M+A ) is a poorer measure of CPU time 
since memory references are ignored. Indeed, since 
multiplication and addition are binary operations, 
for practical purposes it will almost always be the case 
that L+S is greater than M or A, and memory op 
erations, not flops, will be the determining factor for 
CPU time consumed on such machines. Henceforth, 
we shall take C to be equal to L t S, the total number 
of memory operations, or mops. In the remainder of 
this paper, we establish the utility of mops as a cost 
parameter, by demonstrating that machine cycles are 
better correlated to mops than to flops over a wide 
variety of machines. In subsequent Letters [ 16,171, 
it will be illustrated how the minimum-mops opti- 
mality criterion is applied to representative inter- 
mediate steps in an ERI algorithm, with the results 
compared with currently used methods. 

Before proceeding, we note some other relevant 
work in this area. The importance of mops has been 
recognized in the computer literature by, for exam- 
ple, Dongarra [ 181, who writes: “Algorithm per- 
formance can be dominated by the amount of mem- 
ory traffic rather than by the number of floating-point 
operations involved”. Other consideration of theo- 
retical performance metrics involves two-parameter 
representations [ 19,201; however, here we use only 
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the single parameter mops, as this avoids the addi- 
tional complexity in algorithm optimization re- 
quired by consideration of multiple parameters, and 
also because considerable improvement over flops 
can be obtained simply by using an improved single- 
parameter metric. It should be noted, however, that 
while the rationale behind advocating mops is ap- 
propriate for a single-processor vector architecture 
model, when designing algorithms for parallel ar- 
chitectures more sophisticated considerations which 
are highly machine-dependent are necessary, as has 
been pointed out, for example, by Colvin, Whiteside 
and Schaefer [ 2 11. 

2. Correlation of machine cycles and mops 

In table 1 are listed several abstract formulae which 
represent recurrence relation transformations com- 
monly appearing in ERI algorithms [ 11,141. For 
each, the cost in flops and mops is given in the first 
column. The determination of the flop costs is 
straightforward, as it is simply the total number of 
additions and multiplications in the formula. In de- 
termining the mop costs, real constants, denoted by 
lower-case letters, are loop invariants and should not 
be counted, and it is assumed that any variable ap- 
pearing more than once on the right-hand side is 
loaded into a storage register where it may subse- 
quently be rapidly accessed as needed, and thus each 
distinct variable is counted only once. The remain- 
ing columns give the average number of machine 
cycles elapsed per operation performed for a vrariety 
of machines. 

We find that the average number of machine cycles 
per mop is more constant over the given set of for- 
mulae than the number of cycles per flop for most of 
the machines in table 1, excepting the VAX station 
3 100, for which neither flops nor mops give a good 
correlation with machine cycles. This is expected 
since the VAX station 3 100 is a scalar sequential ma- 
chine, i.e. its architecture is not at all similar to that 
implying eq. ( 1). A more appropriate definition of 
C for this machine would be L + M+A. 

The cycles per mop values on the Cray Y-MP/832 
and Fujitsu VP-100 for the next-to-last formula are 
relatively high, and merit elaboration. These ma- 
chines are capable of completing up to two mops, an 
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Table 1 
Theoretical costs and machine cycles per operation for various formulae 
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Formula Cost Machine cycles/operation ‘) 

VAX station Ahiant Multiflow Cray Fujitsu 
3100 FXf8 Trace 14/300 Y-MP/832 VP-100 

W= W+A 
flops 1 41 7.0 1.2 1.6 1.9 
mops 3 14 2.3 0.39 0.54 0.63 

W= WfA +B 
flops 2 31 4.9 0.78 1.1 1.2 
mops 4 15 2.5 0.39 0.57 0.60 

W=W+AtB+C 
flops 3 29 4.1 0.66 I.1 1.1 
mops 5 17 2.5 0.40 0.66 0.64 

W=A+XB 
flops 2 34 4.7 0.78 1.2 1.2 
mops 4 17 2.3 0.39 0.59 0.58 

W=A tXBt YC 
flops 4 35 4.2 0.65 1.0 0.86 
mops 6 23 2.8 0.43 0.67 0.57 

W=AtX(BtYC)+YD 
flops 6 27 3.2 0.49 0.75 0.69 
mops 7 23 2.8 0.42 0.64 0.59 

W=MtYBtmCtnD 
flops 7 24 2.9 0.52 0.71 0.60 
mops 7 24 2.9 0.52 0.71 0.60 

W=A+X[mBtX(nCtXD)] 
flops 8 22 2.0 0.44 0.67 0.66 
mops 6 29 2.7 0.58 0.89 0.88 

W=.4tX[BtY(CtZD)tZE]tY(F+ZG)+ZB 
flops 14 25 2.9 0.46 0.65 0.62 
mops 12 29 3.3 0.54 0.75 0.72 

a) Each formula was coded inside a FORTRAN DO loop oflength 1000, which was compiled at high optimization and executed sufficiently 
many times to accumulate one CPU second on each machine (one processor, vector mode where applicable). The ratios were calculated 
from these timings. 

add and a multiply in one cycle, so eq. (1) is not 
strictly valid for them. For the formula in question, 
these machines will actually be rate-limited by mul- 
tiplications, not mops. This shows that the mini- 
mum-mops criterion should not be applied indis- 
criminately, but the fact that the ratio is nearly 
constant for the rest of the set of formulae illustrates 
the usefulness of the simple cost parameter mops: it 
is successful in approximating machine cycles even 
for some architectures where it is not the most ap- 
propriate cost parameter possible. 

Therefore, it is established that optimizing an al- 
gorithm with respect to mops is an excellent ap- 
proximation to optimizing machine cycles, and that 
this is superior to optimizing the total number of 

flops. Furthermore, the observed constant ratios as- 
sert the validity of the assumption implicit in the 
counting scheme used, namely that an adequate 
number of registers are available so that a sufE- 
ciently resourceful compiler need load each distinct 
variable only once. Since the number of registers as 
well as compiler skill is finite, this assumption can- 
not continue to hold as formulae become more and 
more complicated, and we notice a slight increase in 
cycles/mop on most machines for the more compli- 
cated formulae at the bottom of table 1, but it is im- 
portant to note that the assumption does generally 
hold for the formulae studied here, most of which 
are actually implemented in the PRISM ERI algo- 
rithm [ 11,141. Certain of these formulae are dis- 
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cussed in detail in a following Letter [ 161. 

3. Concluding remarks 

We have demonstrated that total mops is a better 
cost parameter for theoretical performance assess- 
ment of ERI algorithms than total flops due to the 
better correlation of machine cycles to mops on most 
modem computers. Therefore, when designing ERI 
algorithms, the total number of mops should be op- 
timized. The minimum-mops optimality criterion 
can be applied to both the basic types of individual 
steps comprising most ERI algorithms, contraction 
and transformation, to yield improvements in CPU 
time required [ 16,171. It should be stressed that such 
improvements are obtained by methods of reducing 
total mops which do not necessarily correspond to 
minimizing or even reducing the total number of 
flops; indeed, it is sometimes the case that the min- 
imum-mops implementation of a particular task is 
much more expensive in terms of flops than an im- 
plementation which is inferior in performance [ 161. 

Finally, we point out that although the use of mops 
as p theoretical cost measure is advocated here in the 
cantext of optimizing ERI algorithms, the utility of 
such optimization procedures is not limited to this 
area; it is expected that the efficiency of algorithms 
in other areas of computational science which are 
currently optimized with respect to flops can be im- 
proved by applying the minimum-mops criterion. 
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