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The observation that fourth-order restricted Moller-Plesset perturbation theory (RMP4) gives a satisfactory description of the 
He:+ potential curve up to the transition structure for dissociation has led to a general examination of the applicability of RMP4 
theory to the study of homolytic fragmentation in dications. It appears that, in many cases, RMP4 energies do indeed provide a 
useful estimate of the barrier height impeding such fragmentations and that the barrier may be estimated economically by calcu- 
lating RMP4 single-point energies on the UMP2 geometries of the equilibrium and transition structures. We propose the use of a 
new quantity, the A parameter, as an approximate measure of the rate of convergence of the RMP perturbation series and hence 
of the reliability of RMP4 energies. 

1. Introduction 

A convenient and commonly used procedure for 
incorporating the effects of electron correlation into 
molecular-orbital calculations in Msller-Plesset per- 
turbation theory [ 1,2]. The usefulness of this tech- 
nique depends in part on how rapidly the 
perturbation series (MPn) converges. In a recent ar- 
ticle in this journal [ 3 1, we pointed out certain un- 
satisfactory features of the convergence behaviour of 
Moller-Plesset perturbation energies in describing 
homolytic dissociation. In particular, we found that, 
although the Moller-Plesset series based on an un- 
restricted Hartree-Fock starting point (UMP) con- 
verges smoothly, it may converge extremely slowly, 
leading to large errors in calculated barriers for dis- 
sociation at the practically achievable UMP4 level. 
On the other hand, the MP series based on a re- 
stricted Hartree-Fock starting point (RMP) was 
found to converge more erratically but also more 
rapidly so that, despite the very poor results at RHF 
and RMPZ, a reasonably satisfactory description was 
obtained at the RMP4 level. We concluded that 
RMPn describes the homolytic dissociation of 
He:+ (at least up to the transition structure) better 
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than UMPn, for all n > 2. Our results were consistent 
with related observations of Handy and co-workers. 

[41. 
Since RMP4 calculations are relatively costly in 

computational terms, it would be unfortunate if the 
convergence behaviour of the Mnrller-Plesset series 
with respect to geometries for the homolytic disso- 
ciation were to parallel that found for energies, since 
this would imply the necessity of carrying out optim- 
izations at the RMP4 level in order to obtain satis- 
factory results. It would clearly be preferable if 
geometries could be determined at a level of theory 
simpler than RMP4. In particular, if HF or MP2 ge- 
ometries were to prove satisfactory, we would profit 
not only because of their lower cost compared with 
RMP4 calculations but also because of the availa- 
bility of analytical first derivatives at both of these 
levels. 

We commented very briefly on some of these points 
in our previous paper but examine them in detail 
here. Transition structures for the homolytic disso- 
ciations of a selection of multiply charged cations 
(which are of interest to us from other points of view 
[ 5,6] ) have been determined at a sequence of UMP 
and RMP levels. Such species form suitable tem- 
plates for this investigation since the homolytic dis- 
sociations of multiply charged cations, unlike those 
of conventional neutral molecules, are generally ex- 
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othermic and consequently have transition struc- 
tures whose geometries and energies can be 
characterized. In particular, the convergence behav- 
iour of the geometries and energies of the transition 
structures can be examined for both the UMP and 
RMP series. We find that convergence is much more 
rapid for UMP geometries than for UMP energies 
and that, for many of the cases examined, the use of 
UMP2 geometries for (single-point) RMP4 energy 
calculations does not introduce a serious error. In 
addition, we comment on the circumstances under 
which RMP4 energy calculations are likely to prove 
satisfactory in describing homolytic fragmentations. 

perturbation energy (i.e. E(MPn)with n= 1). The 
geometries of the transition structures for the sym- 
metric cleavages of He:+ and N,Hi+, and for the 
loss of H+’ from CHe:+ were also fully optimized. 
These calculations may be undertaken within either 
the restricted (RHF) or the unrestricted (UHF) 
Hartree-Fock framework. We have investigated both 
possibilities, combining each of these with each of 
the five levels of theory listed above. Additionally, 
the barriers for dissociation were also estimated from 
single-point RMP4 energy calculations on the UHF 
and UMPn geometries of the equilibrium and tran- 
sition structures for each system. The results are 
summarized in tables 1-5. Further details of the op- 
timized structures are presented elsewhere [ 5,6]. 

2. Method and results 

Using a modified version [ 71 of the GAUSSIAN 
86 system of programs [ 81, standard ab initio cal- 
culations [ 91 were carried out on the three systems 
He;+, CHel+ and N2Ha+. The 6-31G** basis set 
was used for the dihelium dication while the 6-3 1 G* 
set was employed for the tetraheliomethane and hy- 
drazinium systems. Additional calculations were 
performed on the CHe:+ tetracation and on the 
N2Ha+ dication using the 6-3 1 G and STO-3G basis 
sets, respectively. The geometry of the equilibrium 
structure of each molecule was fully optimized using 
each of the following levels of theory: restricted 
Hartree-Fock theory (RHF), second-, third- and 
fourth-order restricted Msller-Plesset perturbation 
theory (RMP2, RMP3, and RMP4, respectively) and 
restricted singles-and-doubles configuration inter- 
action (RCISD). We note that the Hartree-Fock en- 
ergy is equal to the first-order Moller-Plesset 

In order to allow comparisons with results close to 
the full-C1 limit (provided by CISD calculations in 
the case of He:+), geometries and barriers were cal- 
culated at the CISDTQ/6-31G level for the 
CHej+ tetracation and at the CISDTQ/STO-3G 
level for the N2Hz+ dication. The CISDTQ calcu- 
lations (configuration interaction with all single, 
double, triple and quadruple excitations included) 
were carried out using a graphical unitary group 
(GUGA) CI program [ lo] and employing the fro- 
zen-core approximation. We believe that, for 
CHe:+ and N2Hg+, CISDTQ relative energies are 
close to the “exact” full-C1 values. This point has 
been examined by Harrison and Handy [ 111. 

Finally, the RHF, RMPZ, RMP3, RMP4 and full- 
CI energies of the He;+ dication (6-3 lG** basis set) 
and HF molecule ( 6-3 1 G basis set, frozen core) were 
calculated at a variety of He-He and H-F bond 
lengths. The Marller-Plesset energies were found us- 
ing the GAUSSIAN 86 system of programs while the 

Table 1 
Transition structure bond length (rrs (A)), barrier height (kJ mol-I) and transition structure A( lo,, 2or) value for He;+ + 
He+.+He+’ using the 6-31G** basis set 

RHF-based 

ks barrier 

UHF-based 

rrs barrier 

RMP4//UMP”’ 

barrier A(lq,2o,) 

HF 2.186 194 0.959 164 98 1.73 
MP2 1.362 337 1.018 237 126 1.60 
MP3 1.196 199 1.038 256 133 1.56 
MP4 1.131 147 1.052 257 137 1.53 
CISD 1.142 130 1.142 130 

‘) Based on RMP4 single-point energies at UMPn geometries. 
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Table 2 
Transition structure bond length (rTs (A)), barrier height (W mol-' ) and transition structure A(3a,, 4a, ) value for CHej+ --) 
CHej+’ +He+’ using the 6.31G* basis set 

RHF-based 

rTs barrier 

UHF-based 

rn barrier 

RMP4//UMP a) 

barrier A(% 4ar 1 

HF 2.587 335 1.592 147 91 2.34 

MP2 2.005 189 1.674 181 106 2.29 

MP3 ‘) 1.952 162 1.696 187 109 2.28 
MP4 b’ 1.793 113 1.712 187 110 2.26 
CISD b, 1.846 130 1.735 148 
CISD(Q) b.c) 1.691 84 1.797 125 

a) Based on RMP4 single-point energies at UMPn geometries. ‘) Frozen-core approximation used. 
‘) CISD with inclusion of the Davidson correction for quadruples. 

Table 3 

Transition structure bond length (rTs (A) ), barrier height (kJ mol-‘) and transition structure A( 3a,,, 3az.) value for HUN-NH:+ -t 
H,N*‘+NH:‘ using the 6-31G* basis set 

RHF-based UHF-based RMP4//UMP”’ 

rTs barrier rTs barrier barrier A(3a,,, 3a2,) 

HF 4.779 672 1.988 138 130 1.64 
MP2 2.195 288 2.239 265 186 1.38 
MP3 b’ 2.713 283 2.215 239 182 1.40 

MP4 b’ 2.531 209 2.260 242 189 1.36 
CISD b, 3.433 382 2.247 215 
CISD(Q) b,c) 2.697 237 2.331 223 

‘) Based on RMP4 single-point energies at UMPn geometries. b, Frozen-core approximation used. 
‘) CISD with inclusion of the Davidson correction for quadruples. 

Table 4 Table 5 
Transition structure bond length ( rTs (A) ) and barrier height 
(kJ mol-‘) for CHej+ -CHe$+‘+He+’ using the 6-31G basis 
set 

Transition structure bond length (rTs (A)) and barrier height 
(kJ mol-I) for H,N-NH:+ +H3N+‘+NH3+’ using the STO-3G 
basis set 

RHF-based UHF-based 

TTS barrier rTs barrier 

HF 2.572 280 1.565 105 
MP2 1.986 134 1.657 137 
MP3 =’ 1.923 107 1.683 146 
MP4 a) 1.761 65 1.699 147 
CISD a) 1.819 81 1.719 104 
CISD(Q) a*b) 1.651 43 1.787 81 
CISDTQ a) 1.693 56 

a) Frozen-core approximation used. 
b, CISD with inclusion of the Davidson correction for quadruples. 

RHF-based UHF-based 

TTS barrier rTs barrier 

HF 4.120 842 2.051 174 
MP2 2.540 311 2.211 266 
MP3 a) 2.409 258 2.220 269 
MP4a’ 2.362 228 2.241 268 
CISD”.b’ 2.198 326 2.306 245 
CISD(Q) *b) 2.272 180 2.374 250 
CISDTQ ‘) 2.545 233 

‘) Frozen-core approximation used, 
b, CISP with inclusion of the Davidson correction for quadruples. 
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Table 6 
Total energies (RNF, RMP2, RMP3, RMP4 and full CI, in hartree) and d ( log, la,) values for He:+ as a function of the bond length 
(6-3lG** basis set) 

r(A) RHF RMP2 RMP3 RMP4 full CI A(lo,, la,) 

0.6 -3.57851 -3.61577 -3.62491 -3.62741 -3.62840 3.08 

0.7 -3.59475 -3.63968 -3.65225 -3.65621 -3.65806 2.57 

0.8 -3.57055 -3.62457 -3.64169 -3.64780 -3.65103 2.17 

0.9 -3.53096 -3.59588 -3.61899 -3.62823 -3.63338 1.87 

1.0 -3.48792 -3.56588 - 3.59686 -3.61047 -3.61773 1.64 

1.1 - 3.44705 -3.54052 -3.58167 -3.601 18 -3.60961 1.44 

1.2 -3.41079 -3.52249 -3.57656 -3.60367 -3.61020 1.28 

1.3 -3.38009 -3.51289 -3.58301 -3.61940 -3.61825 1.14 

1.4 -3.355 17 -3.51186 -3.60138 -3.64843 -3.63139 1.01 

1.5 -3.33573 -3.51888 -3.631 11 -3.68949 -3.64725 0.91 

Table 7 
Total energies ‘) (RI-IF, RMQ RMP3, RMP4 and full CI, in hartree) and A( 30,4u) values for HD as a function of the bond length 
(6-3lGbasisset) 

r(A) RHF 

0.90 -99.98292 
1.00 -99.97764 
1.25 -99.92182 
1.50 -99.85505 
1.75 -99.79493 
2.00 -99.74459 

2.25 -99.70371 
2.50 - 99.67096 
2.75 - 99.64489 

RMP2 

- 100.10968 
- 100.10967 
- 100.06665 
- 100.01321 
-99.96782 
-99.93415 

-99.91229 
-99.90120 
-99.89949 

RMP3 

- 100.10857 
-100.10802 
- 100.06395 
- 100.01023 

-99.96548 
-99.93333 

-99.91368 
-99.905 19 
-99.90613 

RMP4 full CI q 30,4o) 

-100.11276 -100.11336 5.38 
- 100.11297 -100.11373 3.97 
- 100.07150 -100.07313 2.49 
- 100.02160 - 100.025 15 1.90 

-99.98251 -99.98876 1.58 
-99.95888 -99.96633 1.36 
-99.95221 -99.95460 1.18 
-99.96334 -99.949 10 1.03 
-99.993 10 -99.94667 0.90 

‘) Frozen-core approximation used. 

GUGA CI program was used to generate the full-C1 
values. The results are summarized in tables 6 and 
7. 

3. Discussion 

The homolytic fissions of a hydrogen-hydrogen 
bond, a carbon-hydrogen bond and a carbon-car- 
bon bond are three fundamental bond-breaking pro- 
cesses. Prototypical of these fragmentations are the 
dissociations of the hydrogen, methane and ethane 
molecules: 

H,+H'+H' , 

CH4-CHj +H' , 

C2H6-+CH;+CH;. 
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As outlined in section 1, it is preferable from a the- 
oretical point of view to study the fragmentation 
processes of multiply charged ions rather than of 
neutral molecules because of the existence of well- 
defined transition structures for the former. For this 
reason, we have studied multiply charged isoelec- 
tronic analogues of the three reactions above, 
specifically: 

He:++He+‘+He+’ , @a) 

CHe:+ -&He:+’ + He+’ , (2b) 

N,H:+ -*NH:’ +NH:’ . ml 

The reactions (2a)- (2~) are formally derived from 
(la)-(lc) bythereplacementofHbyHe+orofC 
by NC, both of which are isoelectronic substitutions 
and affect the equilibrium geometries of the mole- 
cules only slightly [ 5,6 1. 
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In an earlier paper [ 31, we discussed in some de- 
tail the factors which give rise to the pattern of be- 
haviour apparent in table 1. For the two-electron 
He:+ dication, CISD is equivalent to full CI and thus 
yields the exact results for the basis set used. Within 
the RHF framework, the transition structure bond 
length and the barrier to dissociation both decrease 
rapidly from the very poor RHF results to the much 
more satisfactory RMP4 values. On the other hand, 
in the UHF framework, the bond length is signifi- 
cantly underestimated by UHF and only slowly im- 
proves along the UMP sequence. Moreover, the 
sequence of UMP barriers increases from a value 
which is already too high at the UHF level to a value 
at UMP4 which is almost twice the full-C1 result! 

The data pertaining to the dissociations of 
CHe:+ and N,Hi+ (tables 2-5) indicate that the 
MP behaviour observed in the simple He:+ system 
is probably representative also of larger systems. The 
RHF transition structure bond length and barrier 
height are both reduced monotonically along the 
RMP sequence (although the progression is notice- 
ably less smooth than in table 1) and the sequences 
of UMP transition structure bond lengths and bar- 
riers also reveal patterns similar to those in table 1. 
It is also interesting to compare the performance of 
RCISD theory with the (presumably accurate) 
RCISDTQ level of theory (i.e. with all triple and 
quadruple excitations also included in the Cl cal- 
culations - a luxury which is computationally prac- 
ticable only with small basis sets). While exact for 
the two-electron He:+ dication (table 1) and rea- 
sonable for the ten-electron CHej+ system (tables 2 
and 4)) RCISD leads to gross overestimates of both 
the transition structure bond length and the barrier 
height for the eighteen-electron N,Hi+ system (ta- 
bles 3 and 5 ). In contrast, the RMP4 and RCISDTQ 
results are in quite good agreement. The large dif- 
ferences between RCISD and RCISDTQ highlight 
the well-known fact that CISD is not a size-consis- 
tent theory [ 9 1. Apparently, the neglect of unliked 
quadruples in RCISD is responsible for the failure of 
this approach. It is interesting to note that, for 
CHet+ and N,Hg+, the popular Davidson correc- 
tion [ 121 for unlinked quadruples (leading to 
RCISD(Q) results, tables 2 to 5) overcompensates 
and predicts transition structure bond lengths which 
are too short and barriers which are too low. 

It is clear that, of the available Msller-Plesset 
model, RMP4 gives the best description of the pro- 
totypical cleavages which we are considering here. 
Unfortunately, of course, full RMP4 optimizations 
are computationally very expensive, even for rather 
small molecules. Nevertheless, it is apparent from 
tables l-3 that both the RMP2 and UMP2 levels of 
theory lead to geometries which are in fair agree- 
ment with those optimized at the RMP4 level. Of 
these two (rather comparable) second-order treat- 
ments, we have elected to use UMP2 theory: use of 
RMP2 geometries would require a very rapid con- 
vergence in the RMP series from the very poor RHF 
starting point, which may not always be the the case. 
As may be seen from the second-to-last column of 

each of tables 1-3, estimating the barrier by calcu- 
lating RMP4 single-point energies on the UMP2 ge- 
ometries of the equilibrium and transition structures 
provides a useful approximation to the true RMP4 
barrier and removes the necessity of finding the 
RMP4 transition structure. 

Our proposal that restricted, rather than unre- 
stricted, Moller-Plesset perturbation theory may 
sometimes be the better technique for studying ho- 
molytic bond cleavages rests on the observation, in 
this and our earlier paper [ 3 1, that, for moderate ex- 
tensions of the cleaving bond, the RMP series ex- 
hibits superior convergence behaviour to the LJMP 
series. However, the proviso of only moderate ex- 
tension is critical because, beyond a certain (mole- 
cule-dependent) critical extension, theRMPseriesfor 
a homolytically cleaving molecule will always be 
strictly divergent. As the cleaving bond is stretched, 
the (occupied) molecular orbital w, (which contains 
the pair of electrons which is being split) rises in en- 
ergy while the complementary (unoccupied) orbital 
vu falls until, when the bond length is infinite, v0 and 
vu become degenerate. Because the Meller-Plesset 
series is an expansion in negative powers of the dif- 
ferences between orbital energies, this approach to- 
ward degeneracy of y0 and v, will always eventually 
lead to divergence. Clearly then, before calculating 
an RMP4 single-point energy on a UHF or UMP2 
structure, it is important to ascertain not only 
whether or not the RMP series is sufficiently rapidly 
convergent at that geometry but, first, whether it is 
convergent at all. Not to do so, i.e. to estimate the 
energy of a system using the first four terms of what 
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might be a poorly convergent (or even divergent! ) 
series, would be very unwise. 

Although the problem of predicting the conver- 
gence properties of a general Moller-Plesset series is 
an unsolved one [ 4 1, we propose that the conver- 
gence behaviour of the RMP series for a singlet mol- 
ecule with a stretched single bond is accurately 
modelled by that of the much simpler RMP series 
which results from using a post-Hartree-Fock window 
consisting of only the two orbitals y0 and I& We have 
previously studied the electron correlation problem 
within such a window [ 3 ] and have found that it is 
possible to derive recursion formulae for the terms 
of the associated Moller-Plesset perturbation series. 

Moller-Plesset models may be derived [ 9 ] by first 
introducing a generalized electronic Hamiltonin HA 
where 

H1=H,,+A (H-H,) (3) 

and in which H is the exact electronic Hamiltonian 
and Ho is the sum of the one-electron Fock opera- 
tors. If the parameter I=O, then H,=H,; if A= 1, 
then HA = H. The exact energy and electronic wave- 
function are then each expanded as a power series in 
L and substituted into the Schrijdinger equation. Fi- 
nally, 1 is set equal to unity. However, unless the ra- 
dius of convergence n of the energy and wavefunction 
expansions in 3, are substantially greater than unity, 
the resulting perturbation expansions will be either 
slowly convergent or divergent. We now derive an 
approximate expression for li. 

It is well known [ 131 that, for treatments based on 
a restricted Hartree-Fock wavefunction, the corre- 
lation energy due to single excitations is generally 
small compared with that from double excitations 
and we shall therefore neglect the singles contribu- 
tion in the following treatment. In the resulting two- 
orbital, two-electron, doubles-only approximation, 
which we designate by the abbrevation “2 x 2”, the 
total correlation energy EC,,, (2 x 2) is the lower ei- 
genvalue of the correlation Hamiltonian matrix 

A,, A,2 
HA ’ con- = 

[ 1 21 A22 

where 

A,, =O, (5a) 

A,2 =A21 =&a, > (5b) 

A22=2(~,--~)+J,,+J,,-445,,+2K,,. (5c) 

o and u, as subscripts, refer to the occupied and un- 
occupied molecular orbitals, respectively. Jti and KU 
represent the usual Coulomb and exchange integrals 
and Ei is the energy of the orbital vi. Letting 

cu=t(J,,+J,,)-2J,,+K,,, (6a) 

x= (eO-eu)-’ ) (6b) 

K=K,, , (6~) 

gives 

Thus, 

E;,,,,+ (2/x-2&) E,,-K2=0. (8) 

Eq. (8) is a quadratic equation in EC,,. The re- 
stricted Moller-Plesset perturbation series 
RMP( 2x2) is just the Taylor series expansion of 
E,,,, in powers of x. The series will be convergent if, 
and only if, 1 x) is less than some radius of conver- 
gence xc,+. The discriminant of the quadratic equa- 
tion (8) 

D(x)=(2/x-2a)‘t4K2 

has roots 

(9) 

x+ = (a!&iK)-’ ) 

whence 

(10) 

xcrit = ]x* I= (a2+K2)-“2. (11) 

Consequently, the RMP (2 X 2 ) series will converge 
if, and only if, 

Ix] c (cx~+K’)-“‘. (12) 

After dividing both sides of ( 12) by Ix 1, it follows 
that the radius of convergence of the RMP (2 X 2 ) 
parameter ;1 is given by 

n(w0, w,)= (eu -e0)(a2tK2)-“2. (13) 

The /i parameter provides a quantitative measure 
of the RMP ( 2 x 2 ) convergence behaviour: 

(i) If A is much greater than unity, the 
RMP (2 x 2 ) series will converge rapidly. 
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(ii) If n is a little greater than unity, the 
RMP (2 x 2) series will converge slowly. 

(iii) If n is less than unity, the RMP (2 x 2) series 
will diverge. 

In order to calculate n using ( 13)) the six quan- 
tities on the right-hand side of (5~) are required. 
These are all straightforward to compute and we have 
added a small section of code to the population anal- 
ysis link of the GAUSSIAN 86 package to find LI au- 
tomatically at the conclusion of RHF calculations. 

In the final column of tables 1-3, we give the n 
values calculated at the UMPn geometries of the 
transition structures for fragmentation of He:+, 
CHe:+ and N2 Hi+. In all cases, the ortibals wO and 
v” correspond to the o and o* molecular orbitals of 
the breaking bond. That all of the A values in tables 
l-3 are greater than unity indicates that the calcu- 

lated RMP4 barriers derive from convergent RMP 
series, but it is difficult to decide at this stage, simply 
from the numerical values of/i, whether or not the 
series are sufficiently rapidly convergent that fourth- 
order treatments are likely to give satisfactory results. 

To investigate the question further, we have stud- 
ied the quantitative relationships of A, both with re- 
spect to the length of the breaking bond and with 

respect to the performance of RMPn theory, for two 
diatomic molecules (He:+ and HF) for which full- 
CI calculations are computationally feasible. The to- 
tal energies calculated as a function of bond length 
in the He:+ and HF molecules, at the RHF, RMP2, 
RMP3, RMP4 and full-C1 levels, are given in tables 
6 and 7. Additionally, the values of the n parameter 
corresponding to each bond length are shown in the 
rightmost column of each table. These two quite dif- 
ferent diatomic systems were examined in order to 
assess the generality of the RMPn convergence 
behaviour. 

As the bond length in each system is increased, the 
.4 parameter falls monotonically (tables 6 and 7) 
from a satisfactory value in the vicinity of the equi- 
librium structure ((1~2.6 for He:+ and x 5.2 for 
HF) to a value less than unity when the bond is suf- 
ficiently stretched (D 1.4 8, for He:+ and >2.5 A 
for HF). Beyond these critical bond lengths, our 
model predicts that the restricted Msller-Plesset se- 
ries for the two systems are divergent. In figs. 1 and 
2, we plot the unrecovered electron correlation en- 

ergy (ERMPn - Ecl) against the value of the associ- 
ated ,4 parameter for each of He:+ and HF, for n = 1 
to 4. It is clear from these graphs that, for example, 
for the two systems examined, the RMP2 and RMP3 

\‘\\ ll=l 

Fig. 1. Unrecovered electron correlation energy in RMPn calculations as a function of the A ( I os, lo.) parameter for the He:+ dication 
using the 6-31G** basis set. 
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Fig. 2. 

0 

_~~~ 

Unrecovered valenceelectron correlation energy in RMPn calculations BS a function of the A(3a, 40) 
molecule using the 6-31 G basis set. 

energies lie above the exact energies (i.e. ERMvlP,, 
-E,,>O) for all A> 1 but that RMP4 energies lie 
below the full-Cl limit when A is less than z 1.15. 

If we are interested in obtaining reliable relative 
energies of structures corresponding to different ge- 
ometries, then it is obviously important that the un- 
recovered correlation energies at the various 
geometries be as similar as possible. This is equiv- 
alent to requiring that the graphs in figs. 1 and 2 be 
as uniformly flat as possible and, clearly, this is 
achieved much more satisfactorily at RMP4 than at 
RMP2 or RMP3. For example, in a previous paper 
[ 31, we found that RMP2 and RMP3 seriously 
overestimate the dissociation barrier of He{+ but that 
RMP4 is much more satisfactory (table 1). This 
arises because RMP2 and RMP3 recover much less 
correlation energy when A B 1.5 (the value near the 
transition structure) than when Ac2.5 (the value 
near the equilibrium structure) - in fact, 200 and 70 
k.J mol- ’ less, respectively. On the other hand, the 
flatness of the n=4 curve in fig. 1 results in the RMP4 
error over the same range being only 17 k.l rnol-‘. 

We conclude, on the basis of the results for the 
He:+ and HI? molecules, that RMP4 theory is likely 
to offer a reliable treatment of those regions of po- 
tential surfaces where the Iz parameter is greater than 
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parameter for the HP 

z 1.2-l .3, However, use of RMP4 theory at geom- 
etries where the n parameter is less than 1.1 is not 
recommended. 

4. Conclllsions 

In this paper, we have explored the possibility of 
using restricted MPrller-Plesset (RMP ) perturbation 
theory to study the homolytic fragmentations of di- 
cations. Although the RMP series for a homolyti- 
tally cleaving molecule is found to diverge for 
structures in which the bond breaking is sufficiently 
advanced, it may often converge satisfactorily in the 
vicinity of the transition structure. We have intro- 
duced a simple “back-of-the-envelope” quantitative 
measure, the A parameter, of the rate of convergence 
of an RMP series, as a guide for deciding whether or 
not RIvfP4 energies are likely to be reliable. 
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