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A branching point is a point on a reaction path leading from reactants to products (via a transition state) 
at  which it is energetically favorable for the system to break symmetry. Such a point can be defined in 
terms of normal modes along the reaction path and corresponds to zero curvature (a zero Hessian 
eigenvalue) along a symmetry-breaking mode. An effective method for the location of such points is 
presented and realized in an efficient, practical algorithm designed for use in the ab initio program 
package Gaussian 82. 

I. INTRODUCTION 

A useful picture of how a chemical reaction 
proceeds that is familiar to most chemists 
is one where reactants and products lie in 
“wells” on potential energy surfaces, with the 
reactant transforming into the product by 
generally taking the lowest energy pathway 
available to it which leads from the reactant 
“well” to the product “well,” passing through 
a transition state - the highest energy point 
on this pathway-as it does so. Implicit in 
this picture is the concept of the “reaction 
path,” that is, how the various atoms in the 
reactant molecules alter their positions with 
respect to one another-changes in bond 
lengths and bond angles-as the reaction 
proceeds. Although obviously an oversim- 
plification - given enough energy reactant 
molecules can wander all over the potential 
surface and even leave it altogether-this 
concept is very appealing and is certainly rea- 
sonable as a “zeroth order” approximation. 

Perhaps the best way of defining such a 
reaction path is by means of the intrinsic re- 
action coordinate (IRC), first proposed in this 
context by Fukui.’ Basically this path is the 
union of the two steepest descent paths lead- 
ing from the transition state down to the 
reactant and product wells, respectively. The 

definition is unambiguous since exactly one 
steepest descent path originates in either 
downhill direction at the transition state, its 
initial direction being the same as that of the 
eigenvector of the Hessian (the second deriva- 
tive matrix) corresponding to the negative ei- 
genvalue. The first practical algorithm for 
following the IRC down from a transition 
state to a minimum was given by Ishida et a1.2 

11. FOLLOWING A TRANSITION STATE 
DOWNHILL 

If the eigenvector corresponding to the 
negative eigenvalue in the force constant ma- 
trix for a transition state is followed smoothly 
downhill, then the curvature for this particu- 
lar mode (normal coordinate) along the lowest 
energy path will change from being negative 
(in the region of the transition state) to posi- 
tive (in the region of the minimum). During 
this motion all other eigenvalues of the Hes- 
sian must remain positive; if one of the eigen- 
values became negative it would mean that it 
is possible to move downhill (i.e., to lower the 
energy) along the corresponding Hessian 
mode and the system would no longer be on 
the lowest energy path. Thus the lowest en- 
ergy path downhill from a transition state 
must lead to a minimum. 
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It may of course be possible to find a con- 
strained path connecting two transition 
states. For such a path, the curvature of the 
energy surface would change from negative to 
positive along the mode being followed down- 
hill, but from positive to negative along some 
other mode, motion along the second mode 
being prevented by, for instance, symmetry 
constraints. A schematic of the energy sur- 
face in such a situation is shown in Figure 1. 
Here T1 is a minimum in all directions (nor- 
mal coordinates) except one (it is a maximum 
in the plane of the paper say). Along the path 
(shown by the solid curve) from T1 to T2 the 
curvature in this direction changes from 
negative to positive and T2 is a minimum 
along this normal coordinate. However, per- 
pendicular to the plane of the paper T2 is a 
maximum. Along the “valley path” joining T1 
and T2 the valley gradually widens until it is 
locally virtually flat; thereafter it begins to 
curve in the opposite direction and turns into 
a ridge. The point B on this pathway repre- 
sents a “branching” or “bifurcation” point, 
where the curvature along some direction 
other than the one being followed changes 

from positive to negative. At B, this curvature 
would be zero. Thereafter the lowest energy 
pathway would follow the dashed line to M1 
or M2. The ridge from B to T2 would only be 
followed under a suitably rigorous constraint, 
allowing no motion along this second direc- 
tion (i.e., off the ridge). It is with the location 
of such branching points that this article is 
concerned. 

Note that, strictly speaking, the IRC path 
down from T1 goes through B to T2, in other 
words, it will not break symmetry. However, 
after the branching point the IRC is no longer 
the lowest energy path and hence is no longer 
useful as a definition of the reaction path. 

There has been a fair amount of discussion 
in the literature over the last five years or so 
on potential energy surfaces and reaction 
paths. A useful introduction to the concepts 
involved is given in the 1980 review by 
M ~ l l e r , ~  although from a practical point of 
view this is a little out of date now. Basilevsky 
and Shamov4 have presented an algorithm for 
climbing uphill from a minimum to a transi- 
tion state (the “mountaineer’s algorithm”) al- 
though the “optimum ascent path” mapped 

Figure 1. A constrained reaction path connecting two transition 
states. The solid line joining T1 and T2 is a symmetry-conserving 
pathway. B represents the branching point on this reaction path; M1 
and M2 are minima (see the text for more details). 
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out by their approach does not, in general, 
coincide with the IRC path. Two recent papers 
of interest are those of Hoffman et al.5 and 
Valtazanos and Ruedenberg‘; these are di- 
rectly concerned with branching points 
(which they term “valley-ridge inflection 
points”). 

111. COORDINATE SYSTEMS AND THE 
HESSIAN 

One area of possible confusion in the litera- 
ture regarding minimum energy pathways is 
with the coordinate system chosen to map out 
the path. Most authors use mass-weighted 
Cartesian coordinates and both Fukui’s origi- 
nal definition of the IRC and Ishida et al.’s 
algorithm’ use this coordinate system. It is of 
course perfectly possible to define a reaction 
path in any coordinate system; an obvious 
candidate would be a set of (in general) 3N-6 
internal coordinates (where N is the number 
of atoms). However, it should be noted that a 
reaction path based on a steepest descent in a 
given internal coordinate system will be dif- 
ferent to a similar path calculated in another 
internal coordinate system and both paths 
will be different to the steepest descent path 
calculated in Cartesian coordinates (mass- 
weighted or otherwise). Thus -for consis- 
tency, if nothing else - it is advisable to pick 
one particular coordinate system and define 
the reaction path in this system and mass- 
weighted Cartesians are the obvious choice. 

Reaction paths in internal coordinates can 
be related to reaction paths in mass-weighted 
Cartesians by suitable transformations in- 
volving the Wilson G matrix7; Sana et al.’ 
have presented an algorithm which does just 
this. They claim that their algorithm pro- 
vides a general way of following Fukui’s IRC 
in any set of 3N-6 internal coordinates. Trans- 
forming the reaction path in this way is not 
useful for our purposes, however, since for our 
algorithm we need to know curvatures and 
normal modes at points along the reaction 
path and this would require a transformation 
of the Hessian. The only really satisfactory 
way to give a coordinate-free definition of the 
Hessian at any point on the potential energy 
surface is to use differential geometry, as has 
been discussed by Tachibana and F ~ k u i . ~  In 
any case, since these transformations relate 
quantities in internal coordinates to the same 

quantities in mass-weighted Cartesians it 
seems sensible to dispense with the trans- 
formations and use mass-weighted Cartesians 
from the start. 

The use of mass-weighted Cartesians does 
pose a minor problem to do with the Hessian. 
As mentioned above, at any given point on 
the reaction path we require a direction (nor- 
mal mode) downhill which we are following 
and 3N-7 normal modes orthogonal to this 
defining curvatures along directions perpen- 
dicular to the reaction path (the branching 
point corresponds to zero curvature-a zero 
Hessian eigenvalue - along one of these 
modes). Thus the six modes in Cartesian coor- 
dinates corresponding to infinitesimal trans- 
lations and rotations have to be “removed.” In 
addition, the usual normal mode analysis 
used to characterize an optimized structure as 
a minimum, a transition state, or whatever, is 
only valid at a stationary point, namely at a 
point at which the gradient is zero, which it 
certainly is not at an arbitrary point along 
the reaction path. Neither of these points is a 
problem in internal coordinates. 

Both of these problems can be overcome by 
using the projected force constant matrix of 
Miller et a1.l’ In this approach normal modes 
for vibration along the reaction path are de- 
fined by diagonalizing the projected force con- 
stant matrix 

wp = (1 - P)W(l - P) 

where W is the force constant matrix in 
Cartesian coordinates and P is a projection 
matrix defined by 

7 

P = cvivi, 
i= 1 

where the Vi are the six eigenvectors of W 
corresponding to the translations and rota- 
tions plus the eigenvector corresponding to 
the downhill direction, that is the IRC mode. 

Strictly speaking we do not form the 
projected force constant matrix in precisely 
the same way as Miller et al.; what is actually 
done is to project out the gradient, that is, to 
use as the projection matrix 

P = g - g ‘  

where g is the (normalized) gradient vector, 
and to perform a normal mode analysis on the 
resulting force constant matrix (the normal 
mode analysis has the projection of the trans- 
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lations and rotations built into it). In essence, 
this is the same as the Miller projection since, 
if we are accurately following the IRC, that is, 
we are at the bottom of the valley path, the 
IRC mode points in exactly the same direction 
as the gradient-the gradient is an eigen- 
vector of the projected Hessian. In practice, of 
course, the two directions will only be ap- 
proximately the same. 

The basic idea behind projecting out the 
gradient is that, with the linear term in the 
Taylor series expansion of the energy re- 
moved, the system can be treated as if it were 
lying at the bottom of a harmonic well and a 
standard normal mode analysis can be per- 
formed. Projecting out the gradient in this 
way results in the IRC mode having a zero 
eigenvalue. This cannot be confused with the 
zero eigenvalue at the branching point, since 
one of these modes breaks symmetry while 
the other does not. Note that it is not really 
necessary to project out the gradient at all; 
modes that break symmetry are unaffected by 
the projection and the gradient vector itself 
can be taken as the IRC mode. However, with- 
out projecting, curvatures along all the other 
modes are meaningless. 

IV. INTRODUCTION TO THE 
ALGORITHM 

In order to expand on some of the concepts 
involved in the location of branching points, 
which are really fairly simple, it might be 
instructive to take an actual example and for 
this purpose we consider the isomerization of 
the methoxy radical 

CHSO - CHZOH (1) 

This isomerization was the subject of a reac- 
tion path Hamiltonian study by Colwellll and 
is known to possess a branching point. The 
part of the potential surface of interest for our 
purposes is shown schematically in Figure 2 
(at the STo-3G level). The relevant geo- 
metrical structures are given in Figure 3. 

Structure 1 is the transition state (TS) 
for the isomerization. This solid curve link- 
ing 2 and 3 via 1 represents a symmetry- 
conserving pathway as all three structures 1, 
2, and 3 have C, symmetry. However, 2 is not 
a true minimum; it has one imaginary fre- 
quency and is, in fact, the TS linking two 
equivalent C, structures 2' which is the local 

300 - 
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200 - 

- 

100 - 

- 

0 -  

Figure 2. The CHsO potential energy surface at the 
U H F ~ T O - ~ G  level. Relative energies are in kJ mol-'. 
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Figure 3. Stationary and branching points on the 
CHIO potential energy surface. Bond lengths in A; 
bond angles in degrees. 
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minimum in this region of the energy surface. 
2’ lies 12 kJ mol-’ below 2. Somewhere on the 
C, pathway between 1 and 2 the system will 
break C, symmetry in order to reach 2’; this 
point is designated as point B on the solid (C,) 
curve linking 1 and 2 and represents the 
branching point on this reaction path. 

One way of obtaining an estimate of the 
location of the branching point is to follow the 
reaction path down from 1 toward 2 and 
periodically determine the curvatures and 
normal modes (as outlined in the previous 
section) at various points along the path. 
Note that, whereas the reaction path and the 
branching point, have C, symmetry, the force 
constant matrix (from which the curvatures 
are obtained) must be evaluated in a coordi- 
nate system that permits a C, - C, symmetry 
breaking; if the Hessian is evaluated in a 
strictly C, coordinate system the branching 
point will never be found as no Hessian mode 
will ever break C, symmetry. Thus the Hes- 
sian should be allowed all 3N-6 degrees of 
freedom. A plot of the lowest symmetry- 
breaking Hessian eigenvalue (curvature) 
versus distance down the reaction path from 
1 to 2 (in mass-weighted Cartesians) is shown 
in Figure 4. As can be seen the curvature 
along the symmetry-breaking mode changes 
smoothly from a value of +0.03113 at the TS 
to -0.00501 at a distance of ca. 074 a.u. down 

Distance down IRC (bohr) 

Figure 4. Curvature along symmetry-breaking mode 
versus distance down the IRC path from the transition 
state (in mass-weighted Cartesian coordinates; all val- 
ues in atomic units) for the isomerization of the me- 
thoxy radical. 

the IRC; zero curvature - the branching 
point-occurs at a distance of ca. 0.58 a.u. 
down the IRC, where the curve crosses the 
horizontal axis. 

By essentially assuming the behavior out- 
lined above, that is, a smooth change in the 
curvature along the symmetry-breaking 
mode from positive through zero to negative 
along the reaction path, the algorithm at- 
tempts to predict the distance from the cur- 
rent point to the branching point and “walks” 
down the reaction path the predicted dis- 
tance. The Hessian is then reevaluated at 
the new point, a new prediction made and so 
on until a preset convergence criterion on 
the zero Hessian eigenvalue is attained or 
until the search is terminated for some other 
reason. 

The algorithm can be thought of as being in 
two parts: Firstly, after calculating the Hes- 
sian at a particular point along the reaction 
path, predicting how far away the branching 
point is from the current point and secondly, 
“walking” the predicted distance on the po- 
tential energy surface while ensuring that 
the system remains on the reaction path. 

For the second part we use essentially the 
IRC algorithm of Ishida et a1.’ Details of this 
algorithm are well known and will not be re- 
peated here. For the line search needed to get 
back onto the IRC path following each steep- 
est descent step we make use of the projected 
gradient, as suggested by Schmidt et a1.12 

To estimate the distance to the branching 
point we proceed as follows: Typically the 
branch point search will commence from 
the transition state (this is not a prerequisite, 
the search can be started from any point on 
the reaction path above the branching point, 
but unless a preliminary path has been 
“mapped out7, beforehand the only point defi- 
nitely known to lie on the reaction path will 
be the TS). In most circumstances the Hessian 
will already be available, having been calcu- 
lated in order to characterize the stationary 
point as a TS, but if not, it should be evalu- 
ated. Two of the Hessian modes are then 
chosen; one, the IRC mode, the mode to be 
followed downhill (this will simply be the 
mode with negative curvature), and the other 
the perpendicular or symmetry-breaking 
mode (this will generally be the lowest mode 
that breaks symmetry). The curvature along 
the perpendicular mode is noted. A finite- 
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difference step is then taken downhill along 
the direction of the IRC mode. From the new 
point a second finite-difference step is taken 
along the direction of the perpendicular 
mode. This step will break symmetry. A pa- 
rabola is fitted through these two points, as- 
suming that the point along the IRC mode is 
the minimudmaximum of the parabola. This 
then gives an estimate of the curvature in the 
direction of the perpendicular mode at a point 
slightly downhill from the starting point. If 
the energy after taking IRC and perpendic- 
ular finite-difference steps of size FDSTEP is 
EO and E l ,  respectively, the curvature is 
given by B(El-EO)/FDSTEP. This procedure 
is then repeated, in other words, returning to 
the point following the initial IRC finite- 
difference step, another finite-difference step 
is taken followed by another perpendicular 
finite-difference step and a new curvature ob- 
tained. With three estimates of the curvature 
at (roughly) three points along the reaction 
path a quadratic is fitted through these three 
points and extrapolated to zero curvature, the 
distance to which represents an estimate of 
the distance from the current point to the 
branching point. This entire process is termed 
the quadratic extrapolation step. If the qua- 
dratic has two positive roots, the lowest root 
is taken; if it has two negative or imaginary 
roots the quadratic extrapolation is rejected 
in favor of a simple linear fit; if this also fails 
(which will be the case if the curvature along 
the perpendicular mode increases instead of 
decreasing) then an arbitrary maximum dis- 
tance DTMAX (default 0.6 a.u.) is taken. If 
the predicted distance to the branching point 
is greater than this maximum it is reduced. 

Having obtained an estimate of the dis- 
tance to the branching point the algorithm 
proceeds to walk this distance downhill along 
the reaction path (the IRC). During the walk 
the following restrictions are imposed on the 
IRC search: 

1. Wherever possible the steplength taken 
along the IRC should not be less than 
DMIN (default 0.005 a.u.1. 

2. At least three steps should be taken sub- 
ject to (1). 

3. No steplength should exceed DMAX (de- 
fault 0.15 a.u.). 

The reasons for the above restrictions, par- 
ticularly (21, will become apparent later. As 

examples of how they would apply then for a 
predicted distance of 0.6 a.u., four steps 
would be taken each of size 0.15 (DMAX); for 
0.3 a.u., three steps would be taken each of 
size 0.1 and for 0.01 a.u. two steps would be 
taken of size 0.005 (DMIN). 

On arrival at the estimated branching 
point, the Hessian is reevaluated and the new 
IRC and perpendicular modes are deter- 
mined. This can be done by criterion of maxi- 
mum overlap with the previously selected 
modes or by selecting the mode having the 
greatest overlap with the gradient vector (the 
IRC mode) and the lowest mode that breaks 
symmetry (the perpendicular mode). De- 
pending on how far down the reaction path we 
have travelled the curvature along either 
mode may be positive or negative. If the cur- 
vature along the perpendicular mode remains 
positive then exactly the same procedure as 
before is repeated: a series of finite-difference 
steps followed by quadratic extrapolation on 
the estimated curvatures. Since the gradient 
is no longer zero a steepest descent finite- 
difference step can be taken instead of a step 
in the direction of the IRC mode (as men- 
tioned in the previous section, the two direc- 
tions should in theory be the same); however 
in the majority of cases tested to date the IRC 
step results in a better prediction for the lo- 
cation of the branching point. If the curvature 
is negative then we have overshot the branch 
point and we have to go back. Since an ascent 
path following the gradient is numerically 
unstable (i.e., we can only go down the IRC 
and not up), what is actually done is to go 
back to a suitable point on the IRC calculated 
during the original descent and then walk 
down the required distance. During the IRC 
search all points calculated on the IRC path 
and their gradients are stored so it is a simple 
matter to go back to a suitable point. It is for 
this reason that at least three IRC steps are 
taken between each estimated branching 
point; this ensures that there are a choice of 
points to go back to if necessary. Once a point 
with negative curvature has been reached 
this confines the search to a particular region 
of the potential energy surface; the branch 
point must occur before that point. 

The estimated distance back along the IRC 
path from a point with negative curvature 
can be found in exactly the same way as be- 
fore using quadratic extrapolation; however, 
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an attempt is first made at a simple linear 
interpolation between the last point with 
positive curvature and the current point. If 
the predicted distance is greater than the dis- 
tance to the previous point lying on the IRC, 
then the interpolation is rejected in favor of 
the usual quadratic extrapolation; if it is less 
then we return to the last point on the IRC 
and walk back down to the branching point as 
explained in the previous paragraph. 

The above presents in some detail the es- 
sential features of the branch point algo- 
rithm. A series of IRC steps and Hessian 
evaluations is carried out until a point is lo- 
cated on the reaction path with zero curva- 
ture along the perpendicular mode to within 
a given tolerance (default a.u.) or until 
the estimated distance to the branch point is 
insignificant (default 0.001 a.u.1. For the test 
reaction studied here, starting from the tran- 
sition state, convergence on the Hessian ei- 
genvalue was achieved after five Hessian 
evaluations, including the Hessian at the TS 
which was already available. The final ge- 
ometry of the branching point is shown in 
Figure 3 and its relative energy given on 
Figure 2. The accuracy in determining the 
branching point appears to  be excellent; 
starting the search from various points down 
the IRC instead of at the TS makes no real 
difference to the final parameter values, the 
convergence criterion on the Hessian eigen- 
value is such that the same kind of accuracy 
as in a normal geometry optimization is at- 
tained. The accuracy on the energy is not so 
great, which is not surprising considering 
that the branching point does not lie at the 
bottom of a potential well, and depends on 
the "steepness" of the energy surface near the 
branching point; for this system it is within 
5 x Hartree which is really very good. 

Before presenting the algorithm in full we 
consider another example of a branching point 
on the reaction path for the rearrangement 

HzCO +-+ HCOH (2) 

at the sTo-3G level. A schematic of the rele- 
vant portion of the potential energy surface is 
shown in Figure 5. The geometrical struc- 
tures are given in Figure 6. 

The solid line linking structures 2 and 3 
and passing through 1 is a symmetry pre- 
serving pathway which preserves a C, sym- 
metry plane. However 1 is not the true 
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Figure 5. The HzCO potential energy surface at the 
R H F ~ T o - ~ G  level. Relative energies are in kJ mol-l. 
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Figure 6. Stationary and branching points on the 
HzCO potential energy surface. Bond lengths in A; 
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transition state for this rearrangement as 
it has two imaginary frequencies; the real TS 
is 1’ which has C1 symmetry (structure 1 
can be thought of as linking two equivalent 
structures 1‘ with a hydrogen atom bent in 
front of and behind the plane of the paper, re- 
spectively). Thus somewhere on the path from 
2 to 1 C,, symmetry will be lost and a branch- 
ing point will occur; similarly there will be 
another branching point on the C, path from 
3 to 1. 

These branching points cannot be easily lo- 
cated by starting from l’, the true TS, as this 
has no symmetry. Instead we start from 1 and 
follow the symmetry-preserving Hessian 
mode corresponding to one of the negative 
eigenvalues, the other mode with negative 
curvature necessarily being the symmetry 
breaking mode. Thus in this case, unlike in 
our first example, the curvature along the 
perpendicular mode starts off being negative 
and changes to positive along the IRC path, 
that is, we are going down the top of a ridge 
which transforms into a valley rather than 
moving down a valley which changes into 
a ridge. 

The two branching points on the surface 
can be located in essentially the same way as 
before; their geometries are included in 
Figure 6 and relative energies on Figure 5. 
B1 was located in five Hessian evaluations 
and B2 in three. 

V. THE ALGORITHM 

As with the algorithms for analytical13 and 
numericall* geometry optimization pre- 
viously published in this journal, the branch 
point algorithm has been made completely 
compatible with and “built in” to the ab initio 
program package Gaussian 82.15 Below we 
give a description of the main steps involved 
in the algorithm within the framework of 
Gaussian 82. 

1. Select the coordinate system used to 
describe the reaction path. This will 
normally be mass-weighted Cartesians 
(default) but Cartesian coordinates (giv- 
ing a mass-independent path) or a set of 
3N-6 internal coordinates can be chosen. 

2. Start the search from a point known to lie 
on the reaction path (the IRC) above the 
branching point [in general this will be 

the transition state, as in reaction (11, or 
a saddle point having two imaginary 
frequencies - a symmetry constrained 
“transition state”- as in reaction (213. 
Note that, regardless of the coordinate 
system chosen to map out the reaction 
path, the initial geometry should be 
specified in internal coordinates via the 
Gaussian 82 Z matrix. All 3N-6 vari- 
ables should be specified for a system 
with N atoms, even if some of these are 
identical or fixed due to symmetry. The 
algorithm incorporates features which 
ensure that the symmetry is maintained 
along the reaction path despite the pres- 
ence of redundant variables. 

3. Set NSIGN to indicate the curvature pat- 
tern along the perpendicular (symmetry- 
breaking) mode during the search: If the 
curvature changes from positive to nega- 
tive, NSIGN = +l ;  if negative to posi- 
tive, NSIGN = -1. 

4. Evaluate (or read in if already available) 
the force constant matrix. 

5. If the search is in internal coordinates 
diagonalize the internal-coordinate Hes- 
sian; otherwise carry out a normal mode 
analysis on the Cartesian force constant 
matrix. (At an arbitrary point along the 
reaction path, project out the gradient 
before the normal mode analysis.) 
Mass weight the Cartesian coordinates 
if appropriate. Select and store the IRC 
and perpendicular modes. On the first 
step these will generally be the lowest 
modes that conserve and break symme- 
try, respectively; on subsequent steps 
the IRC mode will be the mode which 
has the greatest overlap with the gradi- 
ent vector. 

6. Check for convergence on the perpendic- 
ular mode; if the curvature LAMBDA 
along this mode is less than HCONV (de- 
fault stop with the current point as 
the branch point. 

7. If LAMBDA is such that the branch 
point has not been reached, that  is, 
if NSIGN*LAMBDA > 0, then esti- 
mate the distance t o  the branching 
point using the quadratic extrapolation 
s tep .  S to re  LAMBDA i n  CP1.  If 
NSIGN*LAMBDA < 0 then we have 
overshot the branch point and need to go 
back. If CP1 is non-zero (i.e., a previous 
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Table I. Options available for OPT = BRANCH. 

C Options COMMON/IOP/ 
C 

C I O P C 6 )  
C 
C 
C 
C 
C IOPC7)  
C 
C 
C 
C I O P ( 8 )  
C 
C 
C 
c I O P ( 9 )  
C 
C 
C 
c I O P C l O )  
C 
C 
C 
C 
C 
C 
C 
C 
c I O P C 1 1 )  
C 
C 
C 
c I O P C 1 2 )  
C 
C 
C 
C 
C 
C 
C I O P ( 1 3 )  
C 
C 
C 
C 
C I O P C 1 4 )  
C 
C 
C 
C 
C I O P ( 1 5 )  
C 
C 
C 

MAXIMUM NUMBER OF HESSIAN EVALUATIONS ALLOWED 
0 M I  N( 15,  NVAR+ l  0 1 (DEFAULT)  

(WHERE NVAR = NUMBER OF VARIABLES)  
N N EVALUATIONS 

CONVERGENCE C R I T E R I O N  ON ZERO HESSIAN EIGENVALUE 
0 1O.OD-6 (DEFAULT)  
N 1 0 . 0 - N  

MAXIMUM S T E P S I Z E  ALLOWED DURING I R C  SEARCH 
0 DMAX = 0 . 1 5  (DEFAULT)  
N DMAX = 0 . 0 0 1 * N  

MINIMUM S T E P S I Z E  ALLOWED DURING I R C  SEARCH 
0 D M I N  = 0 . 0 0 5  (DEFAULT)  
N D M I N  = 0 . 0 0 1 * N  

INPUT OF I N I T I A L  HESSIAN 
ALL VALUES MUST BE I N  ATOMIC U N I T S  
0 CALCULATE HESSIAN ANALYTICALLY (DEFAULT)  
1 READ I N  FULL  FRCNST MATRIX 

3 READ FRCNST MATRIX FROM THE CHECKPOINT F I L E  
5 READ CARTESIAN FORCE CONSTANTS FROM CHECKPOINT 

(LOWER TRIANGLE,  FREE FORMAT) 

F I L E  

MINIMUM NUMBER OF I R C  STEPS PER CYCLE 
0 3 STEPS (DEFAULT)  
N N STEPS 

INPUT OF I N I T I A L  I R C  SEARCH D I R E C T I O N  
0 START SEARCH FROM TS (DEFAULT)  

USE HESSIAN EIGENVECTOR AS SEARCH D I R E C T I O N  
(see I C  a r r a y  f o r  eigenvector sign) 

DETERMINE I R C  SEARCH D I R E C T I O N  FROM GRADIENT 
1 START SEARCH FROM A P O I N T  ON THE I R C  

SEARCH TYPE 
0 USE MASS-WEIGHTED CARTESIANS (DEFAULT 1 
1 USE ORDINARY CARTESIANS 
2 USE INTERNAL COORDINATES 

PROJECTED GRADIENT FLAG 
0 

1 DO NOT USE. ENERGY SEARCH ONLY 

USE PROJECTED GRADIENT TO F I T  (DEFAULT)  
PARABOLA DURING L I N E  SEARCH 

F I N I T E - D I F F E R E N C E  STEPSIZE 
0 0 . 0 0 5  
N 0 . 0 0 0 1  * N  

(DEFAULT)  
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Table I. (continued) 

C Options COMMON/IOP/ 

C I O P ( 1 6 )  REQUIREMENT ON PERPENDICULAR MODE CURVATURE 
C 0 CURVATURE SHOULD CHANGE FROM (DEFAULT)  
C P O S I T I V E  TO NEGATIVE 
C 1 CURVATURE SHOULD CHANGE FROM 
C NEGATIVE TO P O S I T I V E  
C 
C I O P ( 1 7 )  MAXIMUM S T E P S I Z E  ALLOWED FOR BRANCH P O I N T  
C EXTRAPOLATION 
C 0 DTMAX = 0 . 6  (DEFAULT)  
C N DTMAX = 0 . 0 1 * N  
C 
C I O P ( 1 8 )  F I N I T E - D I F F E R E N C E  SEARCH SELECTION 
C 0 FOLLOW "LOWEST" HESS I AN MODE (DEFAULT)  
C 1 FOLLOW GRADIENT VECTOR 
C 
C I O P ( 1 9 )  CONVERGENCE C R I T E R I O N  ON BRANCH P O I N T  DISPLACEMENT 
C 0 D T M I N  = 0 . 0 0 1  
C N DTMIN = 0 . 0 0 0 1 * N  
C 
C I O P ( 3 3 )  P R I N T  OPTION 
C 0 ON (DEFAULT)  
C 1 OFF TURNS OFF EXTRA P R I N T I N G  
C (DEFAULT OF "ON" BY POPULAR REQUEST 
C 
C I O P C 3 4 )  DUMP OPTION 
C 0 OFF (DEFAULT 1 
C 1 ON TURNS ON DUMP P R I N T I N G  
C 
C I O P ( 3 5 )  RESTART OPTION 
C 0 NORMAL O P T I M I Z A T I O N  CDEFAULT) 
C 1 F I R S T  P O I N T  OF A RESTART 
C RECOVER GEOMETRY ETC. .  FROM CHECKPOINT F I L E  
C 
C I O P C 3 6 )  CHECKPOINT OPTION 
C OBS! NOTE THAT, FOR A PROPER WORKING OF T H I S  ALGORITHM, 
C CHECKPOINTING I S  MANDATORY. T H I S  OPTION HAS NO EFFECT.  
C 
C 

curvature at a point back up the reaction 
path is known) then linearly interpolate 
between the two points; if the estimated 
distance to the branching point is less 
than the distance to the last point calcu- 
lated on the path, go back to this point 
and continue the search; if not, then re- 
ject the interpolation in favor of a finite- 
difference extrapolation. Store LAMBDA 
in CM1 and save the current point as a 
marker to restrict the search region. 

8. Check for convergence on the branch 
point displacement; if the estimated dis- 
tance to the branch point is less than 

DTMIN (default 0.001 a.u.) stop with 
the current point as the branch point. 

9. Work out the number of points to be cal- 
culated down the reaction path for this 
cycle; this will depend on the estimated 
distance to the branch point and the 
three criteria (1)-(3) given in Section IV. 

10. Start the IRC search proper. During the 
search all points located on the IRC and 
their corresponding gradients are stored 
for possible future use in interpolation 
steps (see 7). 

11. When the required distance has been 
walked down the reaction path, reev- 
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aluate the Hessian and, provided the 
number of Hessian evaluations has not 
exceeded a predefined limit MAXSTEP, 
return to step 5. 

Within Gaussian 82, the branch point algo- 
rithm has been given link number 114; it is 
invoked by the keyword OPT=BRANCH. A 
list of the options currently available for the 
algorithm is given in Table I. 

VI. AVAILABILITY OF THE CODE 

The FORTRAN code for the above algo- 
rithm is available and can be supplied, along 
with the modifications needed to  run in 
a Gaussian 82 environment, on request. 
Both VAX and IBM versions exist. All in- 
tending users should contact the author (JB) 
directly. A separate IRC search algorithm for 
Gaussian 82 users is also available. 

One of us (JB) would like to thank Drs. A. J. Stone 
and J. F. Gaw for useful discussions and S. M. Colwell 
for bringing ref. 10 to his attention. 
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