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Abstract

Conventional 19th century thermodynamics has limited our understanding of statistical physics

to systems in the thermodynamic limit, and at or near-equilibrium. However, in the last decade

two new theorems, collectively referred to as Fluctuation Theorems or FTs, were introduced that

quantify the energy distributions of small systems that are driven out of equilibrium, possibly

far-from-equilibrium, by an external field. As such the FTs represent a much needed extension of

nonequilibrium thermodynamics that can potentially address systems of interest in the 21st century,

including nano/micro-machines and single biomolecular function. Optical trapping has served as

an ideal experimental technique for demonstrating these theorems. Measurement of picoNewton

range forces over nanometre-sized displacements of a trapped micron-sized particle allows us to

measure the energies to a fraction of thermal energy along the particle’s trajectory - precisely what

is needed to demonstrate the predictions of the FTs. Here we review the Fluctuation Theorems, as

originally cast by Evans et al. [1, 2] and Crooks [3], and provide a discussion of their importance

and a comparison of their arguments. We further demonstrate an optical trap experiment that

confirms the FTs. We’ve chosen to review an optical trapping experiment that is identical to

a previously published experiment [10], but where the solvent is viscoelastic rather than purely

viscous. This represents the first experimental demonstration where dynamics of the colloidal

particle are complex and not known apriori.
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INTRODUCTION

Thermodynamics is the study of the flow of heat and the transformation of work into heat.

Our understanding of thermodynamics is largely confined to equilibrium states. The field of

“nonequilibrium thermodynamics” represents a simple-minded extension of the 19th century

concepts of equilibrium thermodynamics to systems that are close to, or near equilibrium.

Moreover these traditional concepts are limited in application to large systems, referred

to as the “thermodynamic limit”. However, in the last decade new theorems, referred to

collectively as Fluctuation Theorems (FTs), lift the requirement of the thermodynamic limit,

describing small systems that evolve far from equilibrium. In particular, the FT of Evans

et al. [1, 2] can be thought of as a generalisation of the Second Law of Thermodynamics

that applies to small systems over short timescales. The FT of Crooks[3] similarly describes

the evolution of systems between equilibrium states. It implies that the change in free

energy is related to the work done by an external field to drive a system between two

states, at arbitrary rates, and not simply quasi-static rates as understood by conventional

thermodynamics. Both of these theorems are at odds with a traditional understanding of

19th century thermodynamics where equilibrium is central and the Second law inviolate.

However, these theorems should be critical to the application of thermodynamic concepts

to systems of interest to scientists and engineers in the 21st century.

Much of the work done in developing and extending the theorem was accomplished by

theoreticians and mathematicians interested in non-equlibiurm statistical mechanics. Until

2002, demonstrations of the theorems were limited to computer simulations and there were

no practical experimental demonstrations of the theorems [5]. Consequently, these theo-

rems have only recently received attention, spurred by the current interest in nano / micro-

machines, or devices that impose nanometre scale displacements (1 nm = 10−9 m)with pi-

coNewton scale forces (1 pN = 10−12 N) , or equivalently, have a work cycle comparable

to kBT or thermal energy (1 kBT = 4.1 pN·nm) per degree of freedom. Such small ma-

chines will, according to the FT, sometimes operate in ”reverse” and in contradiction to

the Second Law of Thermodynamics over small timescales. In 2002 the FT of Evans et

al. was demonstrated experimentally for the first time, using a single colloidal particle,

localised in translating optical trap [5]. Since then, several other experiments have also

confirmed the FT; however, all of these experiments, including the first 2002 experiment,
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were accomplished using systems whose dynamics are accurately described with a simple

Langevin equation with uncorrelated, Gaussian noise. However, the deterministic proofs of

Evans et al. and Crooks imply that the FTs apply generally to systems more complex than

those described with white noise. In this paper we describe the first experiments confirming

the applicability of these FTs to more complex systems, i.e., an optically trapped colloidal

particle suspended in a viscoelastic solvent.

The paper is organised in the following manner. In the following section we review the

FTs, focussing upon their potential importance outside of the field of statistical mechanics

and providing precise definitions of the arguments of the FTs. These FTs are usually studied

as separate theorems; however, both describe the distribution of energies associated with

the trajectories of systems that are driven out of equilibrium by an external field. Next,

we introduce an optical trap experiment that we use to demonstrate these theorems. This

experiment, referred to as the “capture” experiment, follows the dynamics of an individual

micron-sized colloidal particle within an optical trap, whose strength is changed discontinu-

ously. The colloidal particle corresponds to the system, whose trajectory we can easily record

and the optical trap serves as the external potential. Furthermore, we can characterise the

viscoelasticity of the suspending solvent using passive microrheology of the optically trapped

particle to determine the frequency dependence of the local solvent’s storage and loss modulii.

The original capture experiment was accomplished in a purely viscous solution where the

colloidal trajectories are well described using the stochastic equation of motion with white

noise, here we describe a series of optical trapping experiments in a viscoelastic solvent and

demonstrate the FTs simultaneously. Crooks’ FT is satisfied in this system rather trivially

while the Evans’ FT is demonstrated with several thousand experimental trajectories of the

optically trapped particle.

THE FLUCTUATION THEOREMS

Evans-Searles Fluctuation Theorem

In many areas of physical chemistry, researchers strive to understand new systems through

deterministic equations of motion. They seek to quantify microscopic forces and understand

how a system responds to external perturbations, using techniques such as Molecular Dy-
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namics simulation. At the heart of this endeavour is the notion that if the equations of

motion or trajectories of the system are known, then any question about that system may

be answered. However, such deterministic equations (such as Newton’s equations) are time-

reversible, so that for every trajectory there exists a time-reversed trajectory or “anti-”

trajectory which is also a solution to the equations. The relative probabilities of observing

bundles of conjugate trajectories quantifies the “reversibility” of the system: if the proba-

bility of observing all trajectories and their respective anti-trajectories are equal, the system

is said to be perfectly reversible; on the other hand, if the probability of observing anti-

trajectories is vanishingly small, we say that the system is irreversible. The Second Law of

Thermodynamics states that a system evolves irreversibly in one “time-forward” direction,

i.e., the probability of all anti-trajectories is zero. However, the Second Law strictly applies

only to large systems over long time scales and does not describe the reversibility of small

systems that are of current scientific interest, such as protein motors and nano-machines.

This long-standing question of how irreversible macroscopic equations, as summarised by

the Second Law of Thermodynamics, can be derived from reversible microscopic equations

of motion was first noted by Loschmidt[6] in 1876 and has been a paradox since the days of

Boltzmann. Boltzmann’s successors have simply side-stepped this issue by stating “as soon

as one looks at bodies of such small dimension that they contain only very few molecules,

the validity of this theorem [the Second Law of Thermodynamics] must cease” [7].

The Fluctuation Theorem (FT) of Evans & Searles [2] describes how a system’s irre-

versibility develops in time from a completely time-reversible system at short observation

times, to a thermodynamically irreversible one at infinitely long times. That is, it bridges

the microscopic and macroscopic descriptions, relating a system’s time-reversible equations

of motion to the Second Law, and provides a resolution to the long-standing irreversibility

paradox. Specifically, the FT relates the relative probabilities of observing trajectories of

duration t characterised by the dissipation function, Ωt, taking on arbitrary values a and

−a, respectively:
P (Ωt = a)

P (Ωt = −a)
= exp [a]. (1)

The dissipation function, Ωt, is, in general, a dimensionless dissipated energy, accumulated

along the system’s trajectory; expressions for Ωt differ from system to system. We express

Ωt, and other energies introduced below, in units of kBT where kB is Boltzmann’s constant

and T is the temperature of the surroundings with which the system is in contact and is
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initially at equilibrium. Any trajectory of the system that is characterised by a particular

Ωt = a has, under time-reversible deterministic mechanics, a conjugate or time-reversed

trajectory with Ωt = −a. In this way, the LHS of the FT has also been interpreted as a

ratio of the probabilities of observing trajectories to their respective time-reverse or anti-

trajectories. The dissipation function, Ωt, is an extensive property, i.e., its magnitude scales

with system size and observation time, t. Thus, eqn 1 also shows that as the system size

gets larger or the observation time gets longer, anti-trajectories become rare and it becomes

overwhelmingly likely that the system appears time-irreversible, in accord with the Second

Law. That is, the evolution of a large macroscopic system proceeds preferentially in one

direction. This concept is embodied in the Second Law of thermodynamics. The Second

Law states that a macroscopic system evolves overwhelmingly in one, time-forward direc-

tion or is “irreversible”. The Evans-Searles Fluctuation Theorem states that microscopic,

systems evolve in both time-forward and time-reverse directions, and quantifies the system’s

“reversibility”.

Crooks Fluctuation Theorem

From Classical thermodynamics, the work done by an external field to drive a system from

one equilibrium state to another equilibrium state is equivalent to the change of free energy,

∆F , between the states, only in the special case where the path is traversed quasi-statically.

That is the path between the two states must be traversed so slowly that intermediate, as

well as the inital and final states of the system, are all in thermodynamic equilibrium.

Crook’s Fluctuation Theorem [3] states something quite remarkable. In the case of paths

that are traversed at arbitrary rate, ranging from quasi-static to “far-from-equilibrium”, the

distribution of trajectories, characterised by the work done by the external field over the

lifetime of the trajectory, follows

Pf(W = a)

Pr(W = −a)
= exp [a − ∆F ]. (2)

This expression is similar to Evans’ FT in that it relates distributions of trajectories, char-

acterised by an energy, specifically the work, W , expressed in units of kBT . Here T is the

initial temperature of the system on which the external field does work, or equivalently the

temperature of the surroundings with which the system is initially under equilibrium. While
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eqn 1 describes the asymmetry in the distribution of trajectories about a zero-energy Ωt = 0,

Crooks FT, eqn 2, relates two different distributions: (i) a distribution of forward trajecto-

ries that connect states A → B, or Pf where the free energy change between equilibrium

states A and B is ∆F = FB − FA, and the distribution of reverse trajectories, B → A or

Pr, where the respective equilibrium free energy change is −∆F . Like the FT, Crook’s FT

also quantifies how irreversibility evolves out of reversible equations of motion. A perfectly

reversible system is one where the work required to traverse B → A is equal but opposite

in sign to the work required in the time-reversed trajectory, A → B; under time-reversible

mechanics, the RHS of eqn 2 is unity for these reversible paths and W = F , in agreement

with classical thermodynamics.

From Crook’s FT and the definition of ensemble averages,

exp (−∆F ) = 〈exp (−W )〉f . (3)

This expression was first posed by Jarzynski in 1997 [8] and states that the free energy

can be determined by measuring the work, W , done by an external field along dynamical

paths that connect the two states. These paths may be traversed at arbitrary rates, so that

the intervening states may not be in true thermodynamic equilibrium. This is a com-

plete anathema to our understanding of classical thermodynamics. If instead of

averaging the work, you average the exponential of the work, then you can calculate the

equilibrium free energy difference from information obtained along nonequilibrium paths.

The potential importance of eqn 3 has both theoretical and practical aspects. One could

theoretically calculate ∆F using fictitious paths that “morph” between 2 states on a com-

putationally convenient (not necessarily realistic) energy surface. (This differs from classical

thermodynamics where considerable care must be made to measure the work along a path

that is both quasi-static and accurate or realistic.) On the practical side, eqn 3 suggests

that measuring work on small microscopic processes could yield thermodynamic quantities

∆F that are traditionally inferred by calorimetric measurements. The importance here is

that in order to understand molecular-scale processes, it is necessary to probe them using

molecular time/length scales.
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Arguments of the FTs

To understand the FTs and their relationship, we need to define the energies dissipated

along the trajectories, W and Ωt. In the original derivations of the FTs, these energies

were defined over trajectories within deterministic phase space, i.e, where the system’s

degrees of freedom are given by the vectors of time-dependent positions, q and momenta,

p, representing all components of the system. The internal energy, U , of such a system is

the sum of the kinetic energy, K(p), the potential interactions amongst constituents, φ(q),

and the external potential interacting with the degrees of freedom of the system, φext(q, λ):

U(q,p) = K(p) + φ(q) + φext(q, λ). (4)

Here λ parameterises the value of the external field strength as it changes from an initial

value at s = 0 to a final value at time s = t. The work done by an external field on the

degrees of freedom of the system is governed by the First Law

W =

∫ t

0

ds

[

U̇(s) − Q̇(s)

]

, (5)

where Q̇(s) is the instantaneous rate of heat exchange with the system’s surroundings. This

expression is valid for any system. However, in the original derivation of Crooks FT and

Jarzinksi’s relation, the authors considered a system governed by a Hamiltonian, H(q,p),

where by definition, H ≡ U and the system is isolated (there is no heat exchange with the

surroundings, or Q̇(s) = 0) and obeys Hamilton’s equations,

q̇ =
∂H(q,p)

∂p
(6)

ṗ = −
∂H(q,p)

∂q
. (7)

For such a Hamiltonian system, the rate of change of the internal energy is

U̇(s) = Ḣ(s) =
∂H

∂p
ṗ +

∂H

∂q
q̇ +

∂H

∂λ
λ̇ (8)

(9)

=
∂H

∂λ
λ̇, (10)

and the work done by the external field is

W =

∫ t

0

dsU̇ =

∫ t

0

dsλ̇
∂H

∂λ
, (11)
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again, where the energies are expressed in units of kBT and where T is the temperature

of the surroundings with which the system is initially at equilibrium. Although eqn 11 is

the original definition used in the derivation of Crooks FT and the Jarzynski equality, it is

not practical for small systems which are difficult to isolate from the surroundings. Most

small systems are difficult to isolate from their surroundings, and even if possible, work

performed on a small isolated system, as specified by eqn 11, will occur with a simultane-

ously increase in the temperature of the system. Whilst it can be problematic to attempt

any description of the temperature of a small nonequilibrium system, the ∆F would then

characterise the free energy change for that non-isothermal system. Indeed, for several

decades, computer simulationists have studied necessarily small systems by imposing tem-

perature constraints or thermostats in molecular dynamics simulations. Such temperature

constraints are non-holonomic; i.e.. we can append a system’s equations of motion with

a mathematical constraint to fix the temperature; however with such constraints it is no

longer possible to express the dynamics using the Hamiltonian. For example, it is possible

to append Hamilton’s equations of motion with a mathematical constraint to fix the kinetic

temperature [9], f(q,p):

q̇ =
∂H(q,p)

∂p
(12)

ṗ = −
∂H(q,p)

∂q
− f(q,p). (13)

Here H corresponds to the Hamiltonian without the mathematical constraint, or the internal

energy, U of the system with the constraint. Several different mathematical constraints

can be constructed, all of which may be argued to be “artificial”, but which must satisfy

the conditions that (i) additional thermostatting degrees of freedom introduced must be

inert to an external field, φext, (ii) that under a time-invariant φext, the system relaxes to

an equilibrium state, and (iii) that q̇f(q,p) = Q̇(s). That the mathematical constraint

is artificial is of no significance, is evident as one substitutes U(q,p) = K(p) + φ(q) +

φext(q, λ), the kinetic energy K(p) = p · p/m, and the equations of motion into eqn 5 to

show that the explicit value of Q̇(s) vanishes in the expression for W . That is not to say

that W is independent of the heat exchange with the surroundings: the trajectory itself

depends sensitively upon the mathematical constraint f(q,p) or Q̇(s) = q̇f(q,p) through

the system’s equations of motion, eqns 13.

Having properly defined W for both an isolated Hamiltonian system, and a more general
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deterministic system which allows heat exchange, we now turn our attention to the argument

of the Evans-Searles FT, the dissipation function, Ωt. The dissipation function is cast

similarly to W as

Ωt =

∫ t

0

ds

[

U̇0 − Q̇(s)

]

(14)

where U0 is the potential energy of the system where the contribution from the time-varying

external field is neglected; although the trajectory over which U0 is evaluated is determined

by the time-varying external field. That is.

U0 =

[

U − φext(q, λ) + φext(q, λ = 0)

]

. (15)

For an isolated, Hamiltonian system, Q̇(s) = 0 and

U̇0 ≡ Ḣ0 =

[

Ḣ − φ̇ext(q, λ) + φ̇ext(q, λ = 0)

]

(16)

where

dH

ds
=

∂H

∂p
ṗ +

∂H

∂q
q̇ +

∂H

∂λ
λ̇ (17)

dφext(q, λ)

ds
=

∂H

∂λ
λ̇ +

∂φext(q, λ)

∂q
q̇ (18)

dφext(q, λ = 0)

ds
=

dφext(q, λ = 0)

dq
q̇, (19)

leading to

Ωt =

∫ t

0

ds

[

U̇0 − Λ(s)

]

=

∫ t

0

dsq̇

[

∂φext(λ = 0)

∂q
−

∂φext(λ)

∂q

]

. (20)

To develop an expression for Ωt for small systems, it is important to account for heat

exchange with the surroundings, or Q̇(s) 6= 0. By appending Hamilton’s equation with a

thermostat constraint, eqns 17-19 become

dH

ds
=

[

∂H

∂p
ṗ +

∂H

∂q
q̇

]

+
∂H

∂λ
λ̇ = Q̇(s) +

∂H

∂λ
λ̇ (21)

dφext(q, λ)

ds
=

∂H

∂λ
λ̇ +

∂φext(q, λ)

∂q
q̇ (22)

dφext(q, λ = 0)

ds
=

dφext(q, λ = 0)

dq
q̇, (23)

leading to eqn 20, i.e., the same expression for the dissipation function of an isolated Hamil-

tonian system. This is not to say that the dissipation function is independent of heat

exchange, as like W , exchange of heat will determine the system’s trajectory through the

deterministic equations of motion, eqn 13.

9



By analogy, it is now possible to express the dissipation function for any system’s trajec-

tory where the equations of motion and the heat exchange are not necessarily known, but

where the external potential, φext(q, λ) is known. U0 can still be written in terms of the

unknown quantity Q̇(s) as

U̇0 = U̇ − φ̇ext(q, λ) + φ̇ext(q, λ = 0) (24)

= Ẇ + Q̇(s) − φ̇ext(q, λ) + φ̇ext(q, λ = 0) (25)

=

(

λ̇
∂φext(q, λ)

∂λ
+ Q̇(s)

)

−

(

q̇
∂φext(q, λ)

∂q
+ λ̇

∂φext(q, λ)

∂λ

)

+

(

q̇
∂φext(q, λ = 0)

∂q

)

(26)

= Q̇(s) + q̇
∂(φext(q, λ = 0) − φext(q, λ))

∂q
. (27)

So that
∫ t

0
ds[U̇0 − Q̇(s)] again yields equation eqn 20. Once again, it is important to note

that Ωt is independent of the explicit value of the heat exchanged at any point of the

trajectory, although Ωt does depend upon the exchange of heat through the time evolution

of the coordinates, q(s). If the equations of motion are known, either as deterministic or

stochastic, a value of Ωt can either be solved for analytically or numerically; if the equations

of motion are intractable, as in the case of an optically trapped particle in a viscoelastic

solution, then Ωt can be determined from experimentally measured trajectories, q(s), as

0 ≤ s ≤ t.

Finally, it is important to maintain the convention adopted of expressing energies, in-

cluding Ωt and W , in units of kBT where T is the temperature of the surroundings, ir-

respective of whether the system is adiabatic or exchanges heat with the surroundings.

All non-equilibrium trajectories in the FTs must be initiated under equilibrium conditions,

by which we mean that the system and surroundings are in equilibrium and at the same

temperature. Thus, the surrounding temperature is additionally, the most convenient refer-

ence temperature in FTs, particularly in closed systems where the external field is applied

under adiabatic conditions, Q̇ = 0, and the system’s temperature, if it were possible to

define/measure in small, non-equilibrium systems, would increase as work is done on the

system. T is not a scaling factor: normalising the energy terms Ωt and W with any other

temperature would render eqns 1 and 2 as nonequalities.
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THE CAPTURE EXPERIMENT

In the capture experiment, the strength of the stationary optical trap is changed instanta-

neously, and the time-dependent relaxation of the particle’s position from one equililibrium

distribution to another distribution is recorded [10]. For this experiment, a particle is lo-

calised in a stationary trap of strength k0 over a sufficiently long time s that its position is

described by an equilbrium distribution. At time s = 0, the optical trap strength is increased

discontinuously from k0 to k1, k1 > k0, so that we more tightly confine or “capture” the par-

ticle. Alternatively we can decrease the trap strength from k1 to k0 to “release” or relax the

particle. The particles position is recorded as it relaxes to its new equilibrium distribution

and we evaluate the functions W and Ω over an ensemble of non-equilibrium trajectories.

In the capture experiment, the external field parameter λ(s) is the trap strength, k, which

varies discontinuously

λ(s) ≡ k(s) = k0 + (k1 − k0)H(s), (28)

where H(s)is the heaviside function, λ̇(s) = (k1 − k0)δ(s), so that

φext(s) =
1

2

[

k0 + (k1 − k0)H(s)

]

q2(s). (29)

Work, W , is simply the change in the internal energy that occurs upon the instantaneous

change in the trapping constant. For the capture experiment it is

W =

∫ t

0

dsλ̇
∂φeff

∂λ
(30)

=

∫ t

0

ds(k1 − k0)δ(s)
q2(s)

2
(31)

=
1

2
(k1 − k0)q

2(0) (32)

Note that W will always be positive if the trap strength is increased or k1 > k0 and conse-

quently, distributions for W cannot be Gaussian. As all sampled trajectories initiate under

equilibrium conditions, the probability distribution of q(s = 0, k = k0) is a Boltzmann

distribution and the distribution of W is then simply

Pk0→k1
(W ) =

√

k0

π(k1 − k0)W
exp

[

−
k0W

k1 − k0

]

. (33)
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Thus, if we consider the ensemble average, 〈exp [−W ]〉, then

〈exp [−W ]〉 =

∫

∞

0

dWP (W ) exp [−W ] (34)

=

√

k1

k0

(35)

= exp [−∆F ] (36)

where the change in free energy associated with changing the trapping constant from k0

to k1 is ∆F = ln [
√

k1/k0] from classical statistical thermodynamics. Furthermore, if we

consider the probability distribution of W for both the forward or capture directions, i.e.

Wk0→k1
where the trap strength increases from k0 to k1, and the reverse or release direction,

i.e. Wk1→k0
,

Pk1→k0
(W ) =

√

k1

π(k1 − k0)W
exp

[

k1W

k1 − k0

]

, (37)

one can see that these distributions trivially obey Crook’s FT,

Pk0→k1
(W = a)

Pk1→k0
(W = −a)

= exp [a − ∆F ]. (38)

Notice that in the context of the capture experiment, Crook’s FT depends only upon the

equilibrium distribution of particle positions within the optical trap. This distribution is

independent of the viscoelastic response of the surrounding fluid. Consequently, this exper-

imental demonstration of Crook’s FT depends solely upon the ability to sample an equilib-

rium or Boltzmann distribution of particle positions within the particle well. An alternative

experiment, say where the trapping constant changes linearly over some time period is dif-

ferent: there W is accumulated over the time period over which k is changing and the

distribution of W depends upon the response or microrheology of the fluid.

In contrast, the dissipation function, Ωt depends sensitively upon the material properties

of the surrounding fluid as this determines the time-response of the particle position to an

instantaneous change in the trap constant. For any particle trajectory, irrespective of the
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solvent, we can express the dissipation function Ωt as

Ωt =

∫ t

0

dsq̇

[

∂φext(λ = 0)

∂q
−

∂φext(λ)

∂q

]

(39)

=

∫ t

0

ds

[

k0qq̇ −

(

k0 + (k1 − k0)H(s)

)

qq̇

]

(40)

= (k0 − k1)

∫ t

0

dsqq̇ (41)

=
k0 − k1

2

(

q2(t) − q2(0)

)

. (42)

For a particle embedded in a purely viscous solvent, the motion of the particle can be

expressed by the stochastic Langevin equation

ξ
dq

ds
= −k1q + g(s) (43)

where ξ is a friction coefficient and g(s) is uncorrelated Gaussian noise with zero mean

and 〈g(s)g(s′)〉 = 2ξkBTδ(s − s′). As demonstrated by Wang et al.[11], it is possible to

construct an analytic expression for the probability distributions P (Ωt = A) for the capture

experiment in purely viscous solvents. From these analytic expressions for P (Ωt), one can

show that the FT, eqn 1, does indeed hold. However, we are unable to construct such

distributions for a particle in a viscoelastic solvent, where g(s) is time-correlated. Under

these conditions, it is necessary to construct distribution of P (Ωt) from a large ensemble

of experimentally recorded particle trajectories and inspect the development of asymmetry

in the distributions to determine if the FT does indeed still hold. Despite our inability to

describe generally the non-equilibrium trajectories of a particle in a viscoelastic solution, it

is possible to state long time limiting values of Ωt, where equilibrium distributions of particle

positions are expected. First, as any trajectory evolves over infinite time,

lim
t→∞

Ωt = −

(

Wk0→k1
+ Wk1→k0

)

. (44)

That is, the dissipation function over the long time limit is equivalent to the work done

by the external field to “capture” a particle equilibrated in a trap of strength k0, and to

“release” a particle equilibrated in a trap of strength k1. In addition, the ensemble average

of Ωt in the long time limit is, by equipartition [4]:

lim
t→∞

〈Ωt〉 =
(k0 − k1)

2

2k1k0

> 0. (45)

13



Note that the long time limit is predicted to be independent of solvent condition and that

as the difference in trapping constants vanish, the trajectory becomes more reversible, and

Ωt approaches 0.

In order to demonstrate the FT in a viscoleastic solution, it is imperative that we demon-

strate that the fluid response is viscoelastic over the time and length scales explored in

the capture experiment. In accord with the fluctuation-dissipation theorem, the thermal

fluctuations of an optically trapped particle can be used to quantify the micro-rheological

response of the surrounding fluid [12, 13]. Let q(t) represent the the temporal displacement

of the particle of radius R due to a force, F (t). Then the response function or complex

compliance of the single particle motion, expressed in the frequency domain, α̃ = α̃′ + iα̃′′,

relates the Fourier transforms of the displacement and force, q̃ and F̃ respectively:

q̃ = α̃F̃ . (46)

The response function is inversely proportional to the complex shear modulus of the fluid,

G̃, by a Generalised Stokes-Einstein Relation (GSER) or

G̃ =
1

6πRα̃
. (47)

Here G̃ = G̃′ + iG̃′′ where G̃′, the real component, is identified with the elastic or storage

modulus and G̃′′, the imaginary component, is the loss modulus.

G̃′ =
1

6πR

α̃′

α̃′2 + α̃′′2
, (48)

G̃′′ =
1

6πR

−α̃′′

α̃′2 + α̃′′2
. (49)

To determine these moduli from the position of the optically trapped particle, we first

construct a power spectral density, S(f), of particle fluctuations:

S(f) = lim
t→∞

2

t
q̃t(f)q̃∗t (f) (50)

where q̃t(f) and q̃∗t (f) represent the Fourier transform, q̃t(f) =
∫ t/2

−t/2
dsq(s) exp [2πifs], and

its complex conjugate. The imaginary component of the complex response function α̃′′ is

then

α̃′′ =
π

2kBT
fS(f), (51)
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and the real component of the complex response function is given by a Kramers-Kronig

relation, or

α̃′ =
2

π

∫

∞

0

dω
fα̃′′(ω)

f 2 + ω2
. (52)

For a purely viscous fluid, G̃′′ = 2πηf , and there is no elastic component of the modulus.

or G̃′ = 0. However, confinement of the particle’s motion to the harmonic optical trap gives

rise to an elastic contribution to the measured storage modulus, G̃′

measured, so that

G̃′

measured = G̃′ +
k

6πR
. (53)

G̃′

measured is determined from the experimentally measured power spectral density, S(f) and

eqns 51 and 52.

For a Brownian particle with uncorrelated Gaussian noise, one can show that the power

spectral density is given by [14]

S(f) =
kBT

ξπ2(f 2
c + f 2)

(54)

where fc is the “corner frequency”,

fc =
k

2πξ
, (55)

ξ = 6πηR is Stokes drag coefficient, and η = α(f = 0) is the solution viscosity. For

frequencies smaller than the corner frequency, f << fc, the power spectral density is nearly

constant at a “plateau” value of

f << fc ⇒ S(f) ≈ S0 =
2kBT

πkfc
, (56)

while at high frequencies, the power spectral density obeys a power law behaviour,

f >> fc ⇒ S(f) ≈
1

f 2
. (57)

The corner frequency is determined by the intersection of these two regimes. Indeed, the

low-freqeuncy plateau value S0 and the corner frequency, fc, provide an alternative method

to calibrating the strength, or trapping constant k, of the optical trap. This method is

particularly advantageous over the equipartition method (where k is determined from the

variance in the particle position, or k ≡ kBT/〈q(t)2〉) when the trap strength is large. Note

that the variance in the particle displacement, 〈q(t)2〉, is independent of the microrheological

properties of the suspending liquid. The integral over the power spectral density corresponds
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to the variance and depends only upon trap strength and temperature; however the power

spectral density does indeed depend upon the microrheological properties [13]. The corner

frequency and shape of S(f) depend upon these rheological properties of the suspending

liquid. Indeed, the power law behaviour of S(f) at high frequencies is used to qualitatively

describe the fluid: S(f) ≈ f−z where z = 2 for purely viscous solutions and z < 2 for

viscoelastic solutions.

EXPERIMENTAL

The optical trap setup consists of a Nikon DIAPHOT 300 inverted microscope equipped

with a 100× (N.A.=1.3) oil-immersion objective lens and a 4 W Nd:YAG laser, λ = 1064 nm

(Coherent, U.S.A.). The optical trap strength is controlled by adjusting the laser inten-

sity using an LCD power modulator (LPC-NIR, Brockton Electrooptic Corporation, USA).

Changes in the laser intensity are recorded using a photodiode (SDP86001, Honeywell, USA)

located above the sample cell. The position of a trapped particle is detected by projecting

its image onto a quadrant photodiode, which has a resolution of 15 nm (S4349 Hamamatsu,

Japan). Labview and a PCI-6014 data acquisition card (National Instruments, USA) are

used for automatic data collection.

The sample cell holds approximately 8 ml of liquid to minimise any localised heating

from the optical trap. The cell consists of a glass coverslide, a teflon box, and is sealed

using either mineral oil or a second coverslide. The sample cell is filled with either 8 ml of

deionised water or an aqueous solution containing 0.1 wt% of 8×106 MW polyethyleneoxide

(PEO). Approximately 3000 polystyrene particles, with a diameter of 6.3 µm, are injected

locally into the sample cell. One particle is optically trapped and moved at least 2 mm

from the injection site to ensure its isolation from other particles and allowed to equilibrate

within the optical trap for at least 1 hour before measurements taken for microrheology or

FT. The position of the particle is then recorded at 20 kHz for 100 s.

Microrheology

First, power spectral densities are constructed from particle positions in optical traps of

fixed strength, using water and PEO solutions to demonstrate microrheological differences in
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the two solutions. Figure 1 shows the power spectral density of a particle in PEO solution,

SP (f), sampled at 20 kHz and the power spectral density of a similarly sized particle in

water, SW (f). At the high frequencies sampled, SW (f) obeys the power law behaviour,

SW (f) ∼ f−2 that is expected for solvents where there is no elastic response. From the fit of

SW (f) to eqn 54, we obtain the corner frequency, fc and the plateau value S0, from which we

determine the optical trapping constant to be k = 2.3 pN/µm and the solution’s viscosity

η = 0.96 × 10−3 Pa.s, in good agreement with the viscosity of water at room temperature,

known to be 1.0 × 10−3 Pa.s. The power spectral density of the polymer solution, SP (f),

exhibits a high frequency power law behaviour SW (f) ∼ f−1.85, suggesting that an elastic

response is present in the PEO solution. From the corner frequency, fc, and plateau value,

S0, the trap strength is calculated to be k = 2.4 pN/µm, the Stokes drag coefficient is

ξ = 0.475 pN.s/µm2 and the zero-frequency viscosity is therefore η(0) = 7.0 × 10−3 Pa.s.

The storage and loss moduli are calculated from the measured particle position, q(t),

and eqns 48 - 52. Figure 2a shows the storage and loss moduli, G̃′

W and G̃′′

W , calculated

for the pure water solution using SW (f). For water, within the frequency range shown, the

storage modulus, G̃′

W , is roughly constant at G̃′

W = 4.0 × 10−2. This value compares well

with the contribution of the optical trap to the measured k
6πr

= 3.9 × 10−2, indicating that

the elastic component of the particle motion is entirely the result of the confining optical

trap with no elastic contribution from the solvent at these frequencies [13]. The figure also

shows that the loss modulus, G̃′′

W , is linear in frequency, G′′ = 2πηf , as expected for a

purely viscous solution, where η is independent of frequency over the sampled frequency

range. A least squares fit to G̃′′

W provides a viscosity value of η = 0.96× 10−3 Pa.s, agreeing

with that obtained from the Lorentzian fitting. Figure 2b shows the complex moduli for

the viscoelastic PEO solution. It differs considerably from that obtained in pure water: the

storage modulus, G̃′

P , is no longer a constant and the loss modulus, G̃′′

P , no longer has a

simple linear relationship with frequency.

Fluctuation Theorem

To demonstrate the FT, eqn 1, in a viscoelastic solvent, we record and analyse the tra-

jectory of a particle in the PEO solution as the trap strength is changed discontinuously

from k0 to k1. The value of the trap strength is determined by recording the position of
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FIG. 1: The power spectral density constructed from particle fluctuations measured in water,

SW (f), and in the PEO solvent SP (f). Both power spectral densities display a high frequency

power law behaviour: SW (f) ∼ f−2, indicative of particle motion in a purely viscous solvent, and

SP (f) ∼ f−1.85, indicative of particle motion in a viscoelastic solvent.

the optically trapped particle at 500 Hz for 600 s and applying the equipartition theorem to

determine the trapping constant k. Due to the possibility of an assymetric optical trap, the

equipartition theorem was calculated along each orthogonal axis within the focal plane sep-

arately, resulting in (k0,x, k0,y) = (2.24, 2.22) pN/µm and (k1,x, k1,y) = (4.54, 4.37) pN/µm.

These values compare favourably with the fitting parameters of the power spectral density,

sampled at 20 kHZ for 100 seconds. We generated several thousand trajectories of an indi-

vidual particle by cycling the trap strength discontinuosly between k0 and k1 with a period

of 8 seconds:i.e., the optical trap strength is k0 for 0 ≤ t < 4 s and k1 for 4 ≤ t < 8 s.

The characteristic relaxation times of particle motion in optical traps of strength k0 and

k1 is (2πfc)
−1 ≡ ξ/k0 = 0.212 s and (2πfc)

−1 ≡ ξ/k1 = 0.104 s; consequently, the par-
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(a)

(b)

FIG. 2: The storage modulus, G̃′ and real component of the loss modulus, G̃′′ versus frequency, f

for (a) water, and (b) PEO solution. In the sampled frequency range in (a), the storage modulus

for water is independent of frequency and G̃′

W ≈ 4.0 × 10−2. This value is roughly equal to the

expected elastic contribution from the optical trap, k
6πr = 3.9 × 10−2, indicating that the storage

modulus of the solution is zero, as expected for a purely viscous solution. The loss modulus, G̃′′

W ,

is linear in frequency. A least squares fit yields, η = 0.96 × 10−3 Pa.s, agreeing with the values

obtained from analysis of the Lorentzian, eqn 54, fitted to the power spectral density, SW (f). For

the shear moduli measured by particle fluctuations in the PEO solution, (b) shows that G̃′

P differs

from that of water as it is no longer constant, indicating that the solution is now viscoelastic.

Furthermore, G̃′′

P no longer has a simple linear relationship with frequency, f .
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ticle position obeys a Boltzmann distribution at the instances when the trap constant is

discontinuously changed.

Histograms of the dissipation function, i.e. the number of trajectories, Na having a value

of the dissipation function, Ωt at time t within the range a ± da, are constructed from over

25000 particle trajectories and shown in Figure 3. Figures 3(a-c) show the dissipation func-

tion for “capture” where the trapping constant changes from k0 to k1 and the dissipation

function for each trajectory at time t is evaluated from Ωt = 1

2
(k0 − k1)[q

2(t) − q2(0)]. Fig-

ures 3(d-f) show the dissipation function for “release” where the trapping constant changes

from a high value of k1 to a lower value k0 and Ωt = 1

2
(k1 − k0)[q

2(t) − q2(0)] for each

trajectory at time t. In Figures 3a and 3d, corresponding to data recorded only 2 ms after

the change in the optical trap constant, the data is approximately symmetric about zero

with only a slightly larger number of trajectories having a dissipation function with posi-

tive values. The range of values of Ωt in Figure 3a is wider than that shown in Figure 3d:

this reflects that under an initially weaker trap strength, there is a wider distribution of

values of q(0) than when the trap strength is initially high and is lowered as in the case of

Figure 3d. The number of trajectories with a positive dissipation function increases with

time for both k0 to k1 and k1 to k0. Figures 3b and 3e show the histograms after 20 ms,

i.e., only a fraction of the characteristic relaxation time, has elapsed. Here you can see

that the number of trajectories with Ωt > 0 have increased and that the distribution of Ωt

tends to be more asymmetric. Figures 3c and 3f, show distributions of Ωt evaluated 200 ms

after the discontinuous change in k, corresponding to trajectories of duration comparable to

the characteristic relaxation time of the new trap strength: 200 ms is on the order of the

characteristic relaxation time for trajectories in Figures 3c , and twice that for trajectories

in Figures 3f. These distributions remain unchanged for Ωt evaluated over trajectories of

duration t > 200ms, indicating that the system (particle + trap) has relaxed to a new

equilibrium distribution.

The FT plots in Figure 4 show ln
(

Na

N
−a

)

plotted vs Ωt = a, where Na is the number of

trajectories where Ωt = a ± da and N−a is the number of trajectories where Ωt = −a ∓ da,

as calculated from the respective histograms in Figure 3. Figures 4(a-c) are constructed

from Figures 3(a-c), i.e. from trajectories of a “captured” individual particle in viscolealstic

solvent as the trap strength is changed discontinuously from k0 to k1. Figures 4(d-f) are

constructed from Figure 3(d-f), i.e. from trajectories of a “released” individual particle in
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(a) (b) (c)

(d) (e) (f)

FIG. 3: Histograms of Ωt from 3500 trajectories of an optically trapped particle in a viscoelastic

solvent. In (a) - (c) the optical trapping constant is increased from k0 to k1, to more tightly

confine or capture the particle. The histograms are recorded at (a) 2 ms, corresponding to 2% of

the characteristic relaxation time of the particle in the trap of strength k1, (b) 20 ms or 20% of

the relaxation time, and (c) 200 ms or twice the relaxation time of the particle. In (d) - (f) the

optical trapping constant is decreased from k1 to k0 so as to partially release the confinement of

the particle. The histograms are also shown at (d) 2 ms, corresponding to 1% of the characteristic

relaxation time of the particle in the trap of strength k0, (e) 20 ms or 10% of the relaxation time,

and (f) 200 ms, or roughly the relaxation time of the particle motion.

viscolealstic solvent as the trap strength is changed discontinuously from k1 to k0. The

line in each of these figures corresponds to the prediction of the Fluctuation Theorem,

eqn 1. In all but Figure 4a, the experimental data agrees with the Fluctuation Theorem.

The experimental data shown in Figure 4a does not clearly match the FT prediction; i.e.
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at 2ms after the trap strength is increased, the resulting distributions of Ωt do not seem

to obey the FT. Note that in comparison, the FT is obeyed 2 ms after trap strength is

decreased, Figure 4d, albeit the range of Ωt is much reduced, reflecting the initially more

tightly confined particle. Thus, we might expectedly attribute this lack of agreement in

Figure 4a to inadequate sampling of non-equilibrium trajectories. Those trajectories that

initiate at particle positions far from the focal point are represented in the wings of the

equilibrium Boltzmann distribution and are somewhat rare, but nevertheless more frequently

sampled in weak traps than in strong ones. These rare, initial positions can evolve to more

confined positions, as expected from the tightening trap, resulting in trajectories where Ωt is

large and negative. Insufficient sampling of these non-rare trajectories can lead to seemingly

“disproportionate” number of large, negative or positive Ωt.

Figure 5 shows 〈Ωt〉, i.e., the average dissipation function, accumulated to time t after the

instantaneous change in trap strength, versus time, t, for (a) capture (k0 → k1, k1 > k0) and

(b) release (k1 → k0). The points correspond to averages accumulated over 3500 trajectories

of the colloidal particle in the viscoelastic solution and the lines correspond to the predicted

values of 〈Ωt〉 for a purely viscous solution, as determined from the Langevin equation with

Gaussian noise and identical trapping constants. As demonstrated previously, the results of

the capture experiment accomplished in pure water are nearly identical to the predictions

of the Langevin equation. It is clear that the elastic component of the suspending polymer

solution has a marked effect upon 〈Ωt〉 for both capture and release. In the long time limit,

〈Ωt〉, is independent of solvent (i.e., whether viscoelastic or purely viscous), independent of

path (i.e., whether the particle is captured or released) and approaches the average long

time limit value of limt→∞〈Ωt〉 = 0.26 predicted by eqn 45.

CONCLUSIONS

In this paper we reviewed the Fluctuation Theorems of Evans et al. and Crooks and an

optically trapping experiment that demonstrating these theorems. First, we showed that the

arguments of the theorems, the dissipation function Ωt and the work done by the external

field, W , do not explicitly depend upon the exchange of heat between system and surround-

ings. This is not to say that Ωt and W are independent of Q̇ as heat exchange will determine

the system’s trajectory, over which these energies are accumulated. This is very convenient
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(a) (b) (c)

(d) (e) (f)

FIG. 4: Logarithm of the ratio of the numbers of experimental trajectories having dissipation

function Ωt = a ± da and ωt = −a ∓ da, ln [Na/N−a], versus the dissipation function, Ωt = a,

constructed from the histograms of experimental trajectories in Figure 3. The points represent the

experimental data and the line represents the FT prediction. In the top row, (a) - (c), the optical

trapping constant is varied from k0 to k1 and the dissipation function is accumulated after (a)

t =2 ms or 2% of the relaxation time, (b) t = 20 ms, and (c) t = 200 ms or twice the relaxation

time. A least squares fit to the data results in slopes of (a) 0.42 ± 0.47, (b) 0.84 ± 0.37 and (c)

1.08 ± 0.36, as compared with the FT prediction of a slope of unity. In the bottom row, (d) - (f),

the optical trapping constant is varied from k1 to k0 and the dissipation function is accumulated

after (a) t =2 ms or 1% of the relaxation time, (b) t = 20 ms, and (c) t = 200 ms or roughly the

relaxation time. A least squares fit to the data results in slopes of (d) 1.17 ± 0.65, (e) 1.00 ± 0.36,

and (f) 1.21 ± 0.34, as compared with the FT prediction of a slope of unity.
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(a)

(b)

FIG. 5: The average dissipation function, 〈Ωt〉 versus time, t for (a) capture, k0 → k1 and (b)

for release, k1 → k0. The data points are constructed from averages over 3500 trajectories of

a colloidal particle in the viscoelastic solution where the trapping constants are cycled between

k0 = 2.24 and k1 = 4.54 pN/µm. The lines are predictions from the Langevin equation, 〈Ωt〉 =

limt→∞〈Ωt〉(1 − exp [−2tk1/ξ] for capture and 〈Ωt〉 = limt→∞〈Ωt〉(1 − exp [−2tk0/ξ] for release.

The limiting value, limt→∞〈Ωt〉 = 0.26, is independent of solvent and path, i.e. whether capture

or release.
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result and quite necessary for the application of the FTs to small experimental systems

where it is difficult to isolate the system from surroundings, control the heat exchange be-

tween system and surrounding, or even define and measure the temperature of the small

system. Experimentally, it is only necessary to know the temperature of the surroundings

with which the system is in initial equilibrium and to record the trajectories of the system in

response to the applied external field. Second, we showed that in addition to the similarities

in form and arguments of the FTs, the Crooks’ & Evans’ FTs can be applied to the same

set of non-equilibrium trajectories; specifically, the set of trajectories of a colloidal particle

localised in an optical trap whose strength is changed discontinuously. The Crooks FT is

shown to be trivially satisfied in this experiment. Our previous optical trap experiments

used a colloidal particle suspended in a purely viscous solvent, i.e., a system whose dynamics

are accurately described by the Langevin equation with uncorrelated Gaussian noise[4, 10].

Recently a derivation of Evans’ FT from the Langevin equation was given[11], confirming

these experimental results. However, the deterministic derivation of the FT suggests that

the theorem applies more generally, to systems whose dynamics are more complex than the

Langevin equation with white noise. Consequently, we presented here an optical trapping

experiment using a colloidal particle suspended in a viscoelastic solvent. The dynamics of

the particle can be cast in stochastic form but with time-correlated noise and the FT has not

been derived from such an equation of motion. Thus the experimental demonstration of the

FTs in viscoelastic solvents, presented here, represents the first experimental confirmation

with a system involving complex dynamics.
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