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ABSTRACT

The Fluctuation Theorem describes the probability ratio of observing trajectories that satisfy or violate 

the second law of thermodynamics.  It has been proved in a number of different ways for 

thermostatted deterministic nonequilibrium systems.  In the present paper we show that the 

Fluctuation Theorem is also valid for a class of stochastic nonequilibrium systems.  The Theorem is 

therefore not reliant on the reversibility or the determinism of the underlying dynamics.  Numerical 

tests verify the theoretical result.



1.  INTRODUCTION

The Fluctuation Theorem (FT) [1-6] states that the ratio of the probability of observing 

nonequilibrium trajectory segments of duration τ with a time averaged rate of entropy production στ , 

to the probability of observing segments with an average entropy production rate −στ  is,
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There are three approaches that have been used to derive this expression.  This relationship was 

originally derived by Evans, Cohen and Morriss [1] from a natural invariant measure which was 

proposed heuristically for steady state trajectories [7].  It was shown [1] that the Fluctuation Theorem 

(1), was consistent with numerical results [1] for a fluid undergoing steady, reversible shear flow far 

from equilibrium.  Gallavotti and Cohen [5, 6] improved this derivation, demonstrating that the FT 

can be derived from the Sinai-Ruelle-Bowen measure [8], if one employs the so-called Chaotic 

Hypothesis [5,6].  

The second approach to derivating the FT, is applicable to transient trajectories which are initially 

sampled from an equilibrium microcanonical ensemble.  It is valid for all trajectory durations, τ.  

This approach is based on the Liouville measure [2-4, 9].  Since, in the limit τ→∞, transient 

trajectory segments become indistinguishable from a steady state segments, this derivation also leads 

to (1), the asymptotic (τ → ∞ ) steady state FT.  The fact that these two measures, Liouville and 

SRB, lead to the same Theorem, gives credence to these two approaches.  

A third approach that has been used to derive the FT is valid only in the linear response regime close 

to equilibrium.  In a footnote to the original paper on the Fluctuation Theorem [1], the authors noted 

that the FT can be derived using the Green-Kubo relations for the linear response together with an 

application of the Central Limit Theorem to the distribution of {στ }, in the τ → ∞  limit.  This third 

approach although limited to the linear response regime, is quite general with respect to the nature of 
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the thermostatting.  In an obvious limit this approach applies to unthermostatted systems.  This is 

because the Green-Kubo relations are robust with respect to thermostatting.

The FT is interesting in that it gives an analytic expression for the probability that, for a finite system 

and for a finite time, the Second Law of Thermodynamics will be violated.  This expression has been 

tested numerically and predicts the expected long time and large system behaviour, that is: Second 

Law violating trajectories will not be observed in the thermodynamic and/or long time limits.  

Recently the FT has been shown to be valid for various reversible and deterministic systems [1, 2, 

10-12].

Theoretical and numerical studies of the FT have concentrated on reversible, deterministic dynamics 

although recently theoretical studies on stochastic systems have been carried out [13, 14].  In the 

present paper the derivation of the FT which is based on the Liouville measure, is generalised so that 

it applies to stochastic systems.  Numerical data verifying the FT for these systems are also presented.  

Since the FT is also valid for some stochastic systems, reversibility and determinism are clearly not 

prerequisites for the FT.  

The derivation of the FT based on the Liouville measure presented previously [2-4, 9], considered the 

transient response of time-reversible dynamics.  Numerical tests of this formulation were carried out 

using the commonly used deterministic homogeneous Gaussian thermostat, yet  there is no reason 

that this particular thermostat must be used or that it should be applied homogeneously.  It is trivial to 

see that an inhomogeneous thermostat - for example a thermostat which only acts on particles in a 

certain wall region - can be treated in exactly the same manner.  Here it is shown that the FT is also 

applicable to some stochastic systems and therefore it is quite general and is not just applicable to a 

special classes of thermostatted systems.
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2.  DERIVATION OF THE FT  FROM THE LIOUVILLE MEASURE FOR A 

CLASS OF STOCHASTIC SYSTEMS

Consider the equations of motion for a stochastic system given by:

˙ ( ) ( )ΓΓ ΓΓ ξξ= +G t (2)

where ξξξξ(t) is a random variable.  The first term on the right hand side G(ΓΓΓΓ), is deterministic and 

assumed to be reversible.  As  an example, consider the transient response of a system, initially at 

equilibrium, to an applied field with a random term, ξξξξ i, contributing to the equations of motion for the 

momenta.  The system is thermostatted to ensure a steady state can be reached and the equations of 

motion are: 

˙ q i =
pi

m
+ Ci(ΓΓΓΓ )Fe

˙ p i = Fi (q ) + Di (ΓΓΓΓ )Fe + ξξξξ i ( t) −αpi

(3)

where qi and pi are the coordinates and momenta of the ith particle, respectively, Fi is the interparticle 

force on that particle, Fe is an external field applied to the system, Ci and Di describe the coupling of 

the system to the field, and α is a Gaussian thermostat multiplier that fixes the internal energy:

α =
FeD i (ΓΓΓΓ ) ⋅ pi / m + ξξξξ i ⋅ pi / m − FeCi (ΓΓΓΓ ) ⋅ Fi (q)

i =1

N

∑

pi ⋅ pi / m
i =1

N

∑
. (4)

To ensure that the system remains on a constant energy, zero total momentum, hypersurface, the 

thermostat multiplier contains the random term and the restriction, ξξi
i

N

=
=
∑ 0

1

, is imposed.  The phase 

space of the nonequilibrium system is therefore is a subset of that of the initial equilibrium ensemble.  

In equation (3) the stochastic term can be regarded either as a random force that is added to the 

equation for the rate of change of momentum, or it can be regarded as contributing a random term to 
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the thermostat.  The difference between these two interpretations is purely semantic.

If the adiabatic incompressibility of phase space (AIΓΓΓΓ) condition is satisfied, then the Liouville 

equation for this system reads:

df t
dt

f t dN f t O f t
( , )

( , ) ˙ ( ) ( , ) ( ) ( , )
ΓΓ ΓΓ ΓΓ

ΓΓ ΓΓ ΓΓ ΓΓ= − • = +∂
∂ α 1 (5)

where d is the number of Cartesian coordinates considered.  In the following, terms of O(1) are 

neglected as they are not important to the theoretical arguments.  However note that incorporation of 

these terms poses no difficulty and in Section 3, where small systems are examined, the 

consequences of these terms are indicated.  The solution of equation (5) can be written [3]

f t t dN s ds f
t

( ( ), ) exp[ ( ) ] ( , )ΓΓ ΓΓ= ∫ α
0

0 . (6)

The FT considers the probabilities of observing trajectories with entropy production rates which are 

equal in magnitude but opposite in sign.  In the proof of this theorem using the Liouville measure [2-

4, 9] it was necessary, for every possible trajectory, to identify a conjugate trajectory which had this 

property: that is all trajectories were sorted into conjugate pairs.  In a reversible, deterministic system 

this identification was straightforward and was accomplished by carrying out time reversal mappings 

[2-4, 9].  It is now shown how this procedure can be modified for stochastic systems.  

Consider a trajectory segment, ΓΓΓΓ+(s); 0<s<t and its time-reversed trajectory, ΓΓΓΓ -(s); 0<s<t which we 

call an antisegment.  The sign in the subscript reflects the sign of the integral of the thermostat 

multiplier (or entropy production) along the trajectory segment.  For a reversible system, these 

trajectories are simply related by a time reversal mapping: each conjugate trajectory ΓΓΓΓ- is generated 

from the original trajectory ΓΓΓΓ+ by carrying out a time-reversal mapping of the phase at the midpoint of 

the trajectory and integrating the equations of motion backward and forward in time [2-4, 9].  Without 

loss of generality if the field is assumed to be even with respect to the time-reversal mapping, then the 
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flux, entropy production rate and the thermostat multiplier will be odd.  We use the notation that the 

averages of a phase variable, A, along a forward trajectory and its conjugate, time reversed, trajectory 

are given by:

A t t ds A s
t

+ +≡ ∫( ) ( ( ))1
0

ΓΓ (7)

and

A t t ds A s
t

− −≡ ∫( ) ( ( ))1
0

ΓΓ (8)

respectively.  Depending on the parity of the phase function A(ΓΓΓΓ) under time reversal symmetry, there 

may be a simple relation between  A+(t)  and A -(t).  

In a stochastic system the conjugate trajectory can no longer be generated by simply carrying out a 

time reversal mapping and solving the equations of motion.  After the time reversal mapping at the 

midpoint of the original trajectory, integration of the equations of motion forward and backward in 

time will with overwhelming probability, result in the observation of a different set of random 

numbers than were observed for the original trajectory and the trajectories will not be conjugate.  

Clearly a mapping of the sequence of random numbers observed for the forward trajectory must be 

carried out for the conjugate trajectory.  The necessary mapping of the random numbers will depend 

on the function ξξξξ i(R) where R is a random number.  Figure 1 give a diagrammatic representation of 

the way in which conjugate trajectories are generated for stochastic systems.

If the sequence of random numbers: R1, R2, R3, R4 is observed for the original trajectory, then this 

sequence must be appropriately mapped in the conjugate trajectory.  For example if the random term 

contributes only to the equation of motion for ṗxi , which is even under a time-reversal mapping, then 

the sequence R4, R3, R2, R1 must be observed for the conjugate trajectory to be generated.  

Similarly, if the random term contributes only to q̇xi , which is odd under time reversal, then the 

sequence -R4, -R3, -R2, -R1 must be observed.  Provided the mapped sequence is allowed by the 
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random number generator, the antisegment will be a solution of the equations of motion.  It should be 

noted that in the first case no restrictions on the random number generator are required however in the 

second case, a symmetry restriction on the range of numbers is necessary for this proof to be valid.

It can be observed from Figure 1 that M T( )
( ) ( )ΓΓ ΓΓ3 4= ;   M T( )

( ) ( )ΓΓ ΓΓ1 6=  and M T( )
( ) ( )ΓΓ ΓΓ2 5=  where is 

M(T) used to to represent a time-reversal mapping.  At all points along the trajectory the fluxes of 

conjugate trajectories are related by J t t J t t( ; , ) ( ; , )ΓΓ ΓΓ+ −< < = − < <0 0τ τ  and therefore fluxes 

averaged over the duration of the segment are related by:  J J+ −= − .  It is straightforward then to see 

that in order to divide the trajectories into conjugate pairs, the equations of motion do not have to be 

reversible (that is M e M eT iL t T iL t( ) ( ) ( ) ( ) ( ) ( )⋅ ⋅ ⋅ ⋅ =ΓΓ ΓΓ ΓΓ ΓΓ0 0 where M MT T( ) ( )⋅ = 1), but it is necessary 

that the antisegment is a solution of the equations of motion.  

Now it is shown how the probability of observing the conjugate trajectories can be determined.  For 

the system considered, the initial phases are distributed microcanonically, so the probability of 

observing an initial phase inside a small phase volume, δV(ΓΓΓΓ(0)) about ΓΓΓΓ(0) is proportional to 

δV(ΓΓΓΓ(0).  It is assumed that our universe is causal: the probability of observing a trajectory segment 

is proportional to the probability of observing the initial  phase that generates the segment.  Using the 

fact that for sufficiently small volumes, δV(ΓΓΓΓ(t) ~1/f(ΓΓΓΓ(t) and that the Jacobian for the time reversal 

mapping is unity, the solution the Liouville equation given by equation (5) allows the expansion or 

contraction of a phase volume along a trajectory to be determined.  This is illustrated in Figure 2.

The ratio of volumes the δV1 and δV4 gives the ratio of the probability of observing initial phase 

points.  The probability of observing a trajectory is equal to the product of the probability of 

observing the initial phase point and the probability of observing the sequence of random numbers:

  prob s s t prob V prob R RnΓ( ); ( ( )) ( )0 0 1< <( ) = δ K (9)

The probability of observing a trajectory segment with a particular time-averaged value of α is then 

given by the sum over all trajectories with that value, and the probability ratio is given by:
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(10)

where the notation: i iα α τ( ) ( )ΓΓ =∫ +  is used to represent all trajectories, i, for which the time 

averaged value of the thermostat multiplier is equal to α+; and it is assumed that p(R1,...Rn ) = 

  p M R RT
n( ( ))( )

1K .  The resulting fluctuation formula given by equation (10) for this stochastic 

system is identical to that for the deterministic, reversible systems [1-3, 5, 9 ].  As in the deterministic 

case  there may be many different pairs of conjugate trajectories which each have the same value for 

α τ+( ).

The FT derived above is valid for transient trajectory segments of arbitrary length.  Steady state 

trajectory segments can be considered as the long time limit of transient trajectory segments and 

therefore the stochastic FT will also apply to steady state systems.
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3.  NUMERICAL TESTS OF THE FLUCTUATION THEOREM APPLIED TO 

TRANSIENT STOCHASTIC SYSTEMS

Transient NEMD simulations of Couette flow using the SLLOD algorithm and the usual Lees-

Edwards periodic boundary conditions, were carried out employing a stochastic force in the x-

direction and the corresponding Gaussian isoenergetic thermostat.  The equations of motion for this 

system are:

˙

˙

q p i

p F i i p

i i i

i i yi i i

y

p

= +

= − + −

γ

γ ξ α
(11)  

with the thermostat multiplier given by,

α
ξ γ

=
− +

⋅

=

=

∑

∑

i xi xi yi xi i
i

N

i i
i

N

p p p F y( )
1

1

p p

(12)

The system consisted of N = 32 particles in 2 Cartesian dimensions and the particles interacted with 

the WCA short ranged, repulsive pair potential [15].  Lennard-Jones units are use throughout.  The 

internal energy per particle was set at E/N = 1.56032 (i.e.  T~1.0) and the particle density at n = N/V 

= 0.8.  A strain rate of  γ = 0.5 was applied.

The stochastic term is of the simplest kind:  the sequence of random numbers that must be observed in 

order to generate a conjugate trajectory are the same numbers that are observed for the forward 

trajectory, but they must occur in the reverse order.  This means that no restrictions on the distribution 

of the random numbers are required to obtain equation (10).  In the simulations, the stochastic term, 

ξξξξ i, was the product of a random number and a delta function at each time step.  The random numbers 

were selected from a Gaussian distribution with zero mean, a standard deviation of 1.0 and were 
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restricted within the range [-10.0,10.0].

Figure 3 shows the ensemble averaged response of the flux which indicates that a steady state is 

approached and the initial transient response has a Maxwell time of approximately τM = 0.07.

In the transient response simulations, many initial equilibrium phases were generated and the 

response to an applied strain rate was monitored for various trajectory segment lengths.  Histograms 

of  α τ τ α
τ

+ +≡ ∫( ) ( ( ))1
0
ds sΓΓ  were obtained with τ = 0.1, 0.4 and 0.6.  These histograms are shown 

in Figure 4.  The FT predicts that a plot of  ln ( ( )) ( ( ))p pα τ α τ+ +−( )  versus α τ+( )  should give a 

straight line of unit slope.  For each of the trajectory segment lengths considered in Figure 3 the FT 

was tested with O(1/N) corrections included.  The normalised probability ratios are shown in Figure 

5.  In each case a slope of unity is obtained and the FT is verified.

These results show that the FT is valid for finite averaging times of this transient, stochastic system.
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4.  NUMERICAL TESTS OF THE FLUCTUATION THEOREM APPLIED TO 

STEADY STATE STOCHASTIC SYSTEMS

The FT was also examined for steady state systems evolving with the stochastic equations of motion  

considered in Section 3.  Histograms of α τ τ α
τ

+ +≡ ∫( ) ( ( ))1
0
ds sΓΓ  for steady state trajectory segments 

of length τ = 0.05, 0.1, 0.2, 0.3 and 0.4 were calculated.  The results for τ = 0.05, 0.2 and 0.4 are 

shown in Figure 6.

For steady state trajectories, the FT predicts that a plot of ln ( ( )) ( ( ))p pα τ α τ+ +−( )vs α τ+( ) gives a 

straight line of unit slope in the limit τ→∞.  Figure 7 shows the results and figure 8 plots the slope 

as a function of τ, indicating that it approaches unity in the long time limit.
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5.  CONCLUSIONS

The present work shows that the Fluctuation Theorem is quite general and applies to both 

deterministic and stochastic nonequilibrium systems.  As was found to be the case for deterministic 

systems, the Fluctuation Theorem applies: 

• exactly to finite (transient) trajectory segments which are initially sampled from the 

equilibrium microcanonical ensemble and then move isoenergetically towards a steady state, and,

• asymptotically to long time steady state trajectory segments.  In all cases, transient or 

steady state, stochastic or deterministic, the Fluctuation Theorem applies in both the linear and the 

nonlinear response regimes.  

As a final comment we note that although the theory and simulations presented here apply to systems 

in which every particle is ergostatted (so-called homogeneous thermostatting), the theory presented 

here applies equally well to systems were only a subset of the particles are thermostatted.  The theory 

also applies to systems composed of mixtures of particles with different interparticle interactions.  We 

can therefore obviously model boundary thermostatted systems where a fluid obeying Newtonian 

mechanics (ie no thermostat) flows inside thermostatted solid walls, using the theory presented here.  

To treat such a system you consider a mixture of two types of particles where at the temperature and 

density studied one set of particles, the wall particles, are in the solid phase and are thermostatted and 

the other set of particles are liquid and are not thermostatted.  In such cases the only difference to the 

theory above is that in equations such as (6), above the N, refers to the number of thermostatted 

particles and not to the total number of particles.
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Figure 1: Searles & Evans

Figure 1.  A schematic diagram showing the construction of conjugate trajectories for stochastic 

systems.
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Figure 3.  The ensemble averaged response of the flux for as system of 32 particles in 2 Cartesian 

dimensions to which a strain rate is applied at time zero and for which the SLLOD algorithm is used 

to model the shear flow.  The internal energy per particle was set at E/N = 1.56032 (i.e.  T~1.0) and 

the particle density at n = 0.8.  A strain rate of  γ = 0.5 was applied.
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Figure 4.  Histograms of  α τ τ α
τ

+ +≡ ∫( ) ( ( ))1
0
ds sΓ  for a system undergoing transient response to an 

applied strain rate of   γ = 0.5.  The internal energy per particle was set at E/N = 1.56032 (i.e.  

T~1.0) and the particle density at n = 0.8.  Trajectory segments of  a)  τ = 0.1,  b)  τ = 0.4 and  c)  τ 

= 0.6 were used.
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Figure 5.  Plots of  ln
( ( ))

( ( ))

p

p

α τ
α τ
+

+−
 / (2Nτ) vs α τ+( )for the system considered in Figure 4 with  a)  τ 

= 0.1,  b)  τ = 0.4 and  c)  τ = 0.6.  Order (1/N) corrections are included.  The straight line is of unit 

slope and it is the result predicted from the FT.  The slopes obtained from weighted least squares fits 

are a) 0.98±0.01; b) 1.00±0.02; c) 1.02±0.04.  
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Figure 6.  Histograms of  α τ τ α
τ

+ +≡ ∫( ) ( ( ))1
0
ds sΓ  for a system undergoing steady state shear flow 

with an applied strain rate of   γ = 0.5.  The internal energy per particle was set at E/N = 1.56032 

(i.e.  T~1.0) and the particle density at n = 0.8.  Trajectory segments of  a)  τ = 0.05,  b)  τ = 0.2 and  

c)  τ = 0.4 were used.
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Figure 7.  The slope of plots of  ln
( ( ))

( ( ))

p

p

α τ
α τ
+

+−
 / (2Nτ) vs α τ+( )for various trajectory segment 

lengths.  The result is consistent with a convergence to a value of unity in the long time limit which is 

the result predicted from the FT.
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