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Liouville Equation for N-particle distribution function

of(rty_ o . _
o =~ o [T 0] = -iLF(T ) 0

Equation of motion of phase function

dA(T) _ -, 9A(T)

=iLA(IN)
dt or (2)
So,
iL = 9 L= 0 el... iL-iL = 0 e =A(IN
or or or (3)
and since,
ﬁ:[gﬂ'-. 9 If = —fA
dt "ot or (4)

N\ is called the phase space compression factor. The formal solution of the equations of
motion,



> (—iLt)"

f(F,t) = exp[-iLt]f(F,0) = _H(r,0)
n=0 )
and
~ . 2 (iLy"
A(T (1)) = exp[+iLt]A(F () = v A(l'(0))
n=0 .

Response theory

f(r’o) — eXp[—BHo(r)]
[dr expl-BHo(I)

£(I,1) = exp[—(iL + A)t]f(T,0)

Now employ a Dyson decomposition

exp[—(iL + A)t]

= exp[—iLt] —I; dsexp[—(iL + A)s|A exp[—iL(t —9)]
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Equations of motion

dg; p;
_de ﬁ’]L"'CiFe
dp;

t

F +DiFe—ap

Initial equilibrium distribution:
exp[—BHo ()]

Heat Q, isremoved by the thermostat to ensure the possibility of a
nonequilibrium steady state Jiscalled the dissipative flux. The
momenta appearing in the equations of motion are peculiar.

o ischosen to keep the peculiar kinetic energy, K, constant:

Gaussian T hermostat dQ

ot = 2Ka=-JeFe

()

Time dependent nonequilibrium distribution

£(I", ) = exp[-i L(M)t]f (T,0)

f(r,0) =

[dr exp[~BH ()

7N\

Fe()

i
"

time, t




Substitute recursively,

exp[—(iL + A)t]
= exp[—iLt]

_I;dsl exp[—iLs JAexp[—iL(t —s;)]

¥ J';dsl I? ds, exp[-iLs,]A exp[-iL(s, - $,)JA exp[—iL (t —,)]

- (10)
exp[—(iL + A)t]

= exp[~iLt]

_I;dsl A(sy) exp[-iLt]

+I<;d31 f; ds,A(S)A\(sy) expl —iLt]

= exp[ [ ds (9] expl-iL ] n

Substituting into the equation for the distribution function gives,



f(I,1) = exp] —I(; dsA(s)] exp[-BH o (-1)] (12)

For isokinetic equations of motion,

qi :%"'CiFe

p; = F +DijFe —ap; (13)

From eguations of motion,

dHo _ dH™ | dHy ™™
dt ot dt
=-J(I').F, - 2Ka (14)

and
A =3Na +0O(1) (15)



This leads to the so-called Kawasaki expression for the nonequilibrium distribution
function,

£(T,t) = exp[-B J’(;dsJ(—s)- F.]f(T,0)

(16)
We can use this to compute averages
<B(t) >= [dr f(r,)B(r)
= [dr B(r)exp[-B I;dsJ(—s)- F.JF(T,0) an
d <B(t) >/ dt = ~B[dr BN)J(~1)* Fef ("1
= B[l BHI(0)* Fef(T,0) 18

Yielding the Transient Time Correlation Function expression for an average,

<B(t) >= —BF,* I ;ds< J(0)B(s) > (19)
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In the small field limit we can linearise both Kawasaki and TTCF giving, the Linear
Response formula

lim <B(t) >= ~BF* [ds<J(0)B(S) >

F.-0 (20)



Green-Kubo Relations for linear thermal Transport
Coefficients

1 Salf Diffusion coefficient

D=2 A5 <vi(0)+ (1) >

2 Thermal Conductivity
= 2 5500 o0
3 Shear Viscosity

V o«
n= |(|3—TIOdS< ny (O) ny (t) >eq

4 Bulk Viscosity

1
VkgT

Ny = o [GS<IPOV(0)- < pV ] [PV (1)- < pV ] >4,

(21)

(22)

(23)

(24)



NEMD Algorithms for Navier-Stokes transport
coefficients.

Slod agorithm for shear viscosity
d; :&"'iWi
m
pi = F +iypy; —ap;, which is equivalent to: g;

Slod algorithm for viscous flow

a ="l +q; - Ou
m

pi =F —p; e Ou-ap;
Colour Conductivity agorithm for self diffusion

di :p—n;
pi =F —iciF, —a(p; —icJ, /p)
where

B rivay,
m

(25)

(26)

(27)



N
% > (P ~ic;J, /p)?/m=3NkgT
i=1 and =1 (28)

Mz

Evans Heat flow algorithm

di :%
Pi = I:i _(EI _E)F
1 N N
_EZFquu F+2 ZFqujk F-ap;
=1 k=1 (29)
where
N 2 N
E — i
_{Z%+§ZCD”}/N

For each algorithm the Navier-Stokes transport coefficient, L, is evaluated as

ds(s)
= |lim I|m1IO
F.0t-of F (30)
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Note: NEMD algorithms and Green Kubo relations are also known for thermal and

mutual diffusion (Soret and Dufour effects) in nonideal binary mixtures, and for the 12
or so viscosity coefficients of nematic liquid crystals.

Newton's Constitutive Relation for Shear Flow

Drag force on top surface  Fp =P A = —inyA

Strainratetensor Ou= Y O OD:jiy:jvtop/h
0 0 of

Viscous heating, (3—? = —force x velocity =Ry Ayh=B,W
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L ees-Edwards periodic boundary conditions for shear flow.
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The Sllod equations of motion (25) are equivalent to Newtons equations for t>0+, with
alinear shift applied to the initial x-velocities of the particles.

Slod agorithm for shear viscosity
d; :%"'iWi _
p; = F +iyp,; —ap;, which is equivalent to: §; :Ei+iy6(t)yi (25)

v(y) v(Y)
A A SUESV(Y)> = Yy

/\t:o' t=0" I
VAN S
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We compare the results of direct NEMD simulation against Kawasaki and TTCF for 2-
particle colour conductivity.
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Instability of Phase Space Trajectories
The equations of motion for the infinitesimal tangent vectors are,

d _ Cse o = OT(C(1)
affi(t)—T(F) ol (t) oF

3 (1), (i=1..,6N). an

In the infinitesimal limit, &I";(0) - O, the formal solution of this equation can be written
as,
t
T ;(t) = expy [[AST(T(8)]+ 8T, (0) =L(1)* 3T (0), -

The Lyapunov exponents are also the logarithms of the eigenvalues of the symmetric
matrix, A,

A =lim(t - w)A(t) =lim(t - °°)[LT(t)°'—(t)]1/2t (33)

The Liouville equation states that, (1/f)df/dt = 3Na. We can see that the
accessible volume of phase space, W~1/f, decreases to zero.

df(rt) dinw(r), _ _
fartC L[S0 %

(34)
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Using that dHy/dt = 0 and <P =-n(y)y,onehas:

—k T6N
n(y) =
(35)
We this the Lyapunov Sum Rule for shear viscosity.
We define J, K, as,
J= 0,1 O G-1,00
“Hiod  “Th i (36)

where | is the 3N x 3N identity matrix and O is the 3Nx3N null matrix. For
Hamiltonian systems, T, satisfies the infinitesimally symplectic conditioni,

TTeJ = —JeT (37)
It is known that this condition is satisfied if the matrix T, can be written in the form,
S
X -ATH (39)

where the matrices B and C are symmetric. It is easy to show that if T, isreal and
satisfies the infinitessimally symplectic condition, (17), then L, satisfies the globally
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symplectic condition,

LTIL = J (39)

The proof relies on the fact that, expgfqt -T(S)dseexp ot T(s)ds = exp [t T(s)dsexpgf,t -
T(s)ds = I, the identity operator. It is also easy to show that if T is infinitesmally
symplectic then LTeL is also globally symplectic.

If T is infinitesimally symplectic with eigenvalue A, then -A is also an
eigenvalue. Furthermoreif L (or LTeL) is globally symplectic and has an eigenvalue A,
then 1/, isalso an eigenvalue of L (or LTsL).

Since the Lyapunov exponents are the logarithms of the eigenvalues of the
Hermitian matrix, A, the Lyapunov exponents occur in conjugate pairs, A;, A, (= —A)).
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Thermostatted Hamiltonian systems.

Define
T=T-al/l2=Tad-aK/2-al/2 (40)
T'=Ta - aK/2 isinfinitesmally symplectic.
/2t
A(t;a) = pr[I;dsT’T( a )I] expL[IdsT _a® I]E

= A\ (t) exp[ - I;dsa (I 2!

=N (t)exp[- ks

(41)

This implies, that conjugate pairs of Lyapunov exponents A, A;, for Gaussian
thermostatted Hamiltonian systems obey the Conjugate Pairing Rule,

A +A =—-<a>=2A (42)
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Using the Conjugate Pairing Rule,
=3nk T
N(Y) =2 Amac¥) + Amin(V)1,
V2 (43)

In order to calculate A,;,,, normally an extraordinarily difficult task, we calculate the
largest Lyapunov exponent for the time reversed anti-steady state.



reverse time
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The figure above compares the shear viscosity computed directly using NEMD with the
value obtained using the Conjugate Pairing Rule.
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Second Law violations in Nonequilibrium Steady States

For reversible deterministic N-particle thermostatted systems, we examine the
guestion of why it is so difficult to find time reversed trajectories, that will at long
times, under the application of an external dissipative field, lead to Second Law
violating nonequilibrium steady states.

In a nonequilibrium steady state:

eXp[_ Z )‘nir]
W = njA,; >0
| S expl— Y Ayl
] mlA >0 (44)

where {A,;;n=1,..6N} is the set of local Lyapunov exponents, for segment, I.
And the ratio of the limiting (T o) probabilities that the system is on a
segment i and its conjugate anti segment, 1*, is,



exp[- Z)\ni*r] expl Z)\niT]

i _ nA . >0 _ njA,; >0
H expl- Z Amit]l  exp[- z AmiT]
mlA >0 mA ;<O

=exp[T) Ayl =exp[-3N <o >y 1]
n

where we used that,
6N
3N<a>;= —Z)\ni
i=1

(45)

(46)
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We show the probability distribution of <P,> . The distribution is approximately

Xy 1
Gaussian. As can be seen the right hand tail of the distribution where <P,> > 0

consists of K-states which for atime, T, defy the Second Law of thermodynamics.
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We plot I = In[p(<Py>) / p(<-Py>)] / 2NT and <a> ., for 1=1.6 and y = 0.1.
These two functions are essentially linear in <P,,>; with slopes that are very nearly
identical. The straight line shows a weighted least squares fit to [(<P,,>;).
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We graph the slope, o{In[p<P,,>. / p<-P,>1/2NT1}/0 <P,,>,, as a function of 1 for
y=0.1, 0.5. The corresponding results for <a> p,, , are not shown here since they are

independent of the averaging time 1. In determining the slopes a weighted least
squares fit of the data was used. We see that as 1- o, the slope approaches the t-
independent, slope of <a>, p,, asafunction of <P,,>, which is shown by the arrow.
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For transient states which evolve from equilibrium at t=0 towards the steady state we
define:

T
Py>riy = 1 [, By (T (9)ds (47)
For every such transient segment, we define the 1<) segment for which <B,, >, w0y =
= <Py> ). Thisisthe Kawasaki mapped segment.
where, MKI" = MK(X,y,Z,p,, Py, P, Y) = (X,=Y,Z,~Py. Py, —P»Y) = FK). One can show,

Py (7t T, Y) = exp[-iL (M, Y)tIRy (1) = —R (t,T1),) (48)
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V; = V(1) = V4 () expl [ 3Nai( )l (49

Va=V4(21) = Vy(0) expl [ SNa(S T ). (50)

So the ratio of observing transient segments and their conjugatesis.
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21
Ha-/ly = V/V1(0) = V4(20)/V4(0) = expl [ =3Na(sF)ds], @ (51)

Logarithmic probability ratio of segments:antisegments
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time integrated entropy production per deg of freedom = A(2t)
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Lagrangian form of the Kawasaki Distribution

Clearly one can write,
exp(iL(M)t)f(,0) = (I, -t) (52)
However, since this equation is true for all I it must also be true for I'(-t), so that,

exp(iL(l (-0)))i(F'(-1),0) = (' (-1),-t) (53)

Using a Dyson decomposition of the distribution function propagator, one can show
that,

t
exp(iL(M)t) = exp[—ISNO((F(s))ds] exp[iL (IMt]
0 (54)
Substituting equation (54) into (53) gives,



t

f(r(-t),-t)= eXp[—IBNO( (I (s—t))ds|exp[iL (I (-t))t]f (I (-t),0)
0

t
= exp[—IBNa(I‘(s— t))ds]f (I (0),0)
0

—t
= exp[I3N0((F(s))ds]f(F(O),O)

0 (55)
and therefore,

i
f(I(t),t) = exp[I3N0( (I (s))ds]f (I (0),0)
0 (56)

We call this equation the Lagrangian form of the Kawasaki distribution.

35
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Using the Lagrangian form of the Kawasaki distribution function. Since IN',=I4(t),
Fs=T 4(0),

b _ f(ry(0),0)
1 (7400

) 1
expEN Isasa(rl(s))g

= exp[ —3N<0(>1’32t] (57)
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