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Abstract

The Fluctuation Theorem (FT) quantifies the probability of Second Law violations in small

systems over short timescales. While this theorem has been experimentally demonstrated for sys-

tems that are perturbed from an initial equilibrium state, there are a number of studies suggesting

that the theorem applies asymptotically in the long time limit to systems in a nonequilibrium

steady-state. The asymptotic application of the FT to such nonequilibrium steady-states has been

referred to in the literature as the Steady-State Fluctuation Theorem (or SSFT). In this paper,

we demonstrate experimentally the application of the FT to nonequilibrium steady-states, using

a colloidal particle localised in a translating optical trap. Furthermore we show, for this colloidal

system, that the FT holds under non-equilibrium steady-states for all time, and not just in the

long time limit, as in the SSFT.
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I. INTRODUCTION

In many areas of physical chemistry, researchers strive to understand new systems through

deterministic equations of motion. They seek to quantify microscopic forces and understand

how a system responds to external perturbations, using techniques such as Molecular Dy-

namics simulation. At the heart of this endeavour is the notion that if the equations of

motion or trajectories of the system are known, then any question about that system may

be answered. However, such deterministic equations (such as Newton’s equations) are time-

reversible, so that for every trajectory there exists a time-reversed trajectory or “anti-”

trajectory which is also a solution to the equations. The relative probabilities of observing

bundles of conjugate trajectories quantifies the “reversibility” of the system: if the proba-

bility of observing all trajectories and their respective anti-trajectories are equal, the system

is said to be perfectly reversible; on the other hand, if the probability of observing anti-

trajectories is vanishingly small, we say that the system is irreversible. The Second Law of

Thermodynamics stipulates that a system evolves irreversibly in one “time-forward” direc-

tion, i.e., the probability of all anti-trajectories is zero. However, the Second Law strictly

applies to large systems over long time scales and does not describe the reversibility of small

systems that are of current scientific interest, such as protein motors and nano-machines.

This long-standing question of how irreversible macroscopic equations, as summarised by

the Second Law of Thermodynamics, can be derived from reversible microscopic equations

of motion was first noted by Loschmidt[1] in 1876.

The Fluctuation Theorem (FT) of Evans et al. [2, 3] describes how a system’s irre-

versibility develops in time from a completely time-reversible system at short observation

times, to a thermodynamically irreversible one at infinitely long times. That is, it bridges

the microscopic and macroscopic descriptions, relating a system’s time-reversible equations

of motion to the Second Law. Specifically, the FT relates the relative probabilities of ob-

serving trajectories of duration t and their conjugate anti-trajectories, each characterised by

the dissipation function, Ωt, taking on arbitrary values A and −A, respectively:

P (Ωt = −A)

P (Ωt = A)
= exp (−A). (1)

The dissipation function, Ωt, is, in general, a dimensionless dissipated energy, accumulated

along the system’s trajectory; expressions for Ωt differ from system to system. It is an

extensive property, i.e., its magnitude scales with system size and observation time, t. Thus,
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eqn 1 also shows that as the system size gets larger or the observation time gets longer, anti-

trajectories become rare and it becomes overwhelmingly likely that the system appears

time-irreversible, in accord with the Second Law. In addition, eqn 1 also shows that the

ensemble average of the dissipation function is positive for all t and for any system size; i.e.,

〈Ωt〉 ≥ 0 which is referred to as the Second Law inequality [4]. However, the FT does not

prescribe the time or length scales over which such irreversibility evolves. This is gleaned

from the specific equations of motion governing the system as well as the distribution of

initial states of the system.

In the literature, the reader will find two different labels for the Fluctuation Theorem,

depending upon how the theorem is applied. The Transient Fluctuation Theorem or TFT

is simply eqn 1 applied to transient systems, i.e., systems that evolve from a known initial

equilibrium state towards a final equilibrium or non-equilibrium steady-state. The Steady-

State Fluctuation Theorem or SSFT refers to the steady-state application of the theorem,

where the dissipation function is evaluated over trajectory segments of duration t, sampled

wholly under nonequilibrium steady-state conditions. When Ωt is evaluated for steady-state

trajectories, the theorem is said to hold only in the long time limit,

lim
t→∞

P (Ωt = −A)

P (Ωt = A)
= exp (−A), (2)

which is precisely the form of the SSFT given in the literature. As we show in this paper,

the asymptotic limit in the SSFT is a result of approximations made in the argument of the

theorem, the dissipation functon, Ωt. When we are able to express Ωt exactly , the asymptotic

limit is no longer needed and the operative theorem under steady-state conditions is the FT,

eqn 1. Thus, while the literature and its nomenclature might indicate that there are two

different theorems[5], the FT is general and applicable to both transient and steady-state

conditions. As the detailed proofs of steady-state and transient applications of the FT are

different, we will use the labels SSFT and TFT to refer to these different proofs, as well as

to the application of the asymptotic limit in eqn 2.

To demonstrate the use of the FT under steady-state conditions, we chose a system where

the dissipation function can be approximated for deterministic dynamics and expressed ex-

actly for stochastic or Langevin dynamics. This system is based upon the drag experiment

used by Wang et al [6] where a colloidal particle is weakly held in a stationary optical trap

that is translated uniformly with velocity vopt starting at t = 0. Initially the particle’s
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position in the harmonic well is distributed according to an equilibrium Boltzmann distri-

bution with an average particle velocity of 0. With trap translation, the particle is displaced

from its equilibrium position until, at some later time, the average velocity of the particle

is equal to the trap velocity and the average particle position is determined by a balance

between the optical force and hydrodynamic drag, figure 1. From this point, the system is
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FIG. 1: Transient and steady-state motion of a colloidal particle, shown as relative particle velocity,

v̄(t)/vopt versus scaled time t/τ , localised in a stationary optical trap that is translated with

constant velocity vopt starting at t = 0. This average of the particle velocity, measured in the

direction of the trap translation, is predicted from a balance of optical force and hydrodynamic

drag: v̄(t) = 1
τ (r̄(t) − voptt) where v̄(t) = dr̄(t)/dt, τ is the characteristic timescale of relaxation,

and the average initial position of the particle is at the centre of the optical trap, r̄(t = 0) = 0. A

steady-state trajectory of the particle corresponds to trajectory time, t > 5τ , where v̄(t)/vopt no

longer varies in time and is approximately unity.

in a non-equilibrium steady-state. In their original experiment, Wang and colleagues evalu-

ated the dissipation function, constructed using deterministic dynamics from an equilibrium

initial condition and thereby demonstrated the FT, eqn 1, under transient conditions. In

this paper, we report similar drag experiments using linear and circular translation of a

particle-filled optical trap and evaluate the dissipation function under steady-state condi-

tions. Consistent with previous literature on the SSFT, we demonstrate experimentally that

the FT holds asymptotically in the long time limit - but only for Ωt derived approximately.

However, when Ωt is derived exactly, the FT holds for all time, including short times.
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The remainder of the paper is organised in the following manner. In the following section,

we briefly review the definition of the dissipation function for non-equilibrium processes and

its derivation using both deterministic and stochastic dynamics. We show that closed-form

expressions used in the literature for deterministically-derived steady-state dissipation func-

tions are approximations to an exact, but insoluble expression. Furthermore, we demonstrate

that for select systems, it may be possible to construct an exact, closed-form expression for

the steady-state dissipation function using stochastic dynamics. In Section III we describe

the experimental system that generates steady-state trajectories of a colloidal particle lo-

calised in a translating optical trap and in Section IV we show, using 2 sets of data, that the

FT holds for all time under nonequilibrium steady-state whenever the dissipation function

is expressed exactly and not approximately.

II. DETERMINISTIC AND STOCHASTIC DISSIPATION FUNCTIONS IN THE

STEADY STATE

Deterministic derivation of an approximate dissipation function for steady-state

trajectories

For a Newtonian, deterministic system, a system’s state is described in terms of the co-

ordinates q and momenta p of all constituent molecules, including solvent molecules and is

represented by a point in phase space, Γ ≡ {q,p}. For every trajectory that is initiated

at Γ0 ≡ {q0,p0} and terminates at Γt ≡ {qt,pt} in a system of reversible dynamics, there

is a unique conjugate or anti-trajectory that starts at Γ∗

0 ≡ {qt,−pt} and ends at Γ∗

t ≡
{q0,−p0}. Let δV (Γs ≡ {qs,ps}) represent a volume element of a bundle of trajectories

at time s. Then the corresponding bundle of conjugate trajectories or anti-trajectories has

the volume δV (Γ∗

s ≡ {qt−s,−pt−s}) at time s. As the dynamics are deterministic, a set

of trajectories spanning Γ0 and Γt (as well as the corresponding set of anti-trajectories) is

completely specified by the duration of the trajectories, t, and a set of phase-space points

at arbitrary time s, 0 ≤ s ≤ t, δV (Γs).

A measure of reversibility, Ωt is the ratio of the probabilities of observing sets of trajec-

tories and their time-reverse or anti- trajectories. The probabilities of the trajectory/anti-

trajectory can be described by the probabilities of the volume elements at any arbitrary
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time s along the system’s trajectory:

Ωt(Γ) = ln

[

P (δV (Γs))

P (δV (Γ∗
s))

]

, (3)

where we have Γ as an argument to the dissipation function, Ωt(Γ), to signal that the

dissipation function is derived using deterministic dynamics. The reader may recognise

eqn 3 as an alternative description of the FT. Equilibrium statistical mechanics provides

probability distributions which are simple explicit functions of the phase space, Γ. But it

is not possible to cast closed-form expressions of distributions of non-equilibrium states in

phase-space [7]. However, if we specify that all trajectories are intiated under equilibrium

conditions, then the phase-space probabilities distributions are known initialy, s = 0. The

dissipation function is thus written for deterministic systems as:

Ωt(Γ) = ln

[

P (δV (Γ0))

P (δV (Γ∗

0))

]

(4)

Consequently, for the determination of a system’s dissipation function, deterministic dy-

namics requires that trajectories start from an equilibrium state, whose distribution we can

easily express.

To illustrate eqn 4 with a specific system, consider Ωt for an optically-trapped particle

whose coordinate and momenta are given by q1
s and p1

s at time s, in a sea of identical

particles that are otherwise unaffected by the trap. At t = 0, the stationary trap is set

in motion with constant velocity vopt. This is the molecular analog of Wang’s colloidal

experiment. Here P (δV (Γ0)) ∼ exp (−H(Γ0)/kBT ), where the Hamiltonian is H(Γ0) =

K(p0) + Φ(q0) + Φopt(q
1
0) with K(p0) and Φ(q0) designating the system’s kinetic energy

and the potential energy arising from interparticle interactions, both being constants of

the isothermal system. The trap potential at any time, s, is Φopt(q
1
s) = 1

2
k(q1

s − vopts)
2

where vopts is the position of the trap centre, initially located at the origin. Likewise, the

distribution of anti-trajectories, P (δV (Γ∗

0)), is determined by the Hamiltonian evaluated

at Γ∗

0, or equivalently at the phase-space destination point, Γt of the forward trajectory,

evaluated under initial, equilibrium conditions: H(Γ∗

0) = K(−pt) + Φ(qt) + Φopt(q
◦

t ). Some

care is needed in evaluating Φopt : in order to preserve the time-reversal mapping, the optical
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trap center is located at voptt at the start of an anti-trajectory. Thus

Ωt(Γ) = ln

[

exp (−H(Γ0)/kBT )

exp (−H(Γ∗
0)/kBT )

]

(5)

(6)

=
1

kBT

∫ t

0

ds

(

dK(p)

ds
+

dφ(q)

ds
+

dφopt(q
1)

ds

)

(7)

or

Ωt(Γ) =
1

kBT

∫ t

0

ds(fopt · vopt), (8)

where we have used

∫ t

0

ds
dK(p)

ds
= −k(q◦ − voptt)

dq1

dt
−

∫ t

0

ds
dΦ(q)

ds
,

and
∫ t

0

ds
dΦopt(q

1)

ds
= k(q1 − voptt) · (

dq1

dt
− vopt)

and where fopt ≡ −dΦopt/dq
◦

s is the optical force acting on the particle. It is important

to emphasize again that the system is constrained to be at equilibrium at the lower time

integration limit, t = 0. For a strict derivation that includes thermostatting constraints and

phase-space compression factors, the reader can follow the deterministic derivation of Ωt(Γ)

provided by Reid et al for a stationary trap whose strength increases at t = 0 [8]. For the

drag experiment, Ωt(Γ) corrresponds physically to the time integral over the instantaneous

rate of work Ω(Γ) ≡ fopt · vopt required to translate the trap with constant velocity vopt. If

the trap contained no particle, no energy would be dissipated in translating it. In Wang’s

colloidal experiments, particle trajectories with Ωt(Γ) < 0 were observed in a weak, slowly-

translating trap up to 2-3 seconds after trap translation. That is, heat fluctuations in the

surroundings provided useful work for up to a few seconds. For larger systems, this would

be a violation of the Second Law of Thermodynamics and consequently, Wang et al referred

to these observable trajectories as “entropy-consuming”. It is important to emphasize that

the strict derivation of eqn 8 from eqn 4 requires that the time integration start under

equilibrium conditions so that distributions of intial particle positions are known.

As the deterministic definition of Ωt requires that the relative probabilities of trajectories

be made under initial, equilibrium conditions, it is not possible to construct exact expres-

sions for Ωt(Γ) for trajectory segments of duration t that are wholly at a nonequilibrium

steady-state. However, as the dissipation function is extensive, an approximate steady-state
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dissipation function can be constructed in the following way. We can cast Ωt in terms of its

instantaneous rate of change, Ω(s) at time s, accumulated from an initial equilibrium state

at time s = 0 to some arbitrary time, t:

Ωt =

∫ τ

0

dsΩ(s) +

∫ t

τ

dsΩ(s). (9)

Here we have introduced τ as an arbitrary “cut-off” time that is sufficiently large that the

system can be regarded as being in steady-state for s > τ , so that Ωt is cast as a sum

of transient and steady-state contributions. The steady-state contribution is identified with

the steady-state dissipation function, Ωss
t , which we can use to approximate Ωt with an error

of order τ .

Ωt ≈ Ωss
t + O(τ) (10)

It is instructive to express these dissipation functions as time-averages, Ω̄t = Ωt/t, such that

Ω̄t ≈ Ω̄ss
t + O

(

τ

t

)

. (11)

This shows clearly that the error invoked by approximating Ω̄t with Ω̄ss
t vanishes in the long

time limit as τ/t. However, the fluctuations in the measure Ω̄ss
t along a trajectory also vanish

in the long time limit and, in order that the SSFT be of any importance, it is necessary that

these fluctuations vanish more slowly than O(τ/t), the error in the Ω̄ss
t approximation. The

measure Ω̄ss
t along the steady-state portion of a trajectory is

Ω̄ss
t ≡ 1

t

∫ t

0

dsΩ(s), (12)

which can be re-expressed as a sum of measures taken along contiguous trajectory segments

of duration ∆t :

Ω̄ss
t ≡ 1

t

t/∆t
∑

i

∫ i∆t

(i−1)∆t

dsΩ(s) (13)

≡ 1

t

t/∆t
∑

i

Ω∆t. (14)

If ∆t is larger than the longest correlation time in the system, then the sum
∑

Ω∆t is of

independent measures and the variance in the sum is proportional to the number of measures

or t/∆t. The factor 1/t in front of the sum decreases the variance of the sum by a factor t2.

Thus, the standard deviation of the measure Ω̄ss
t along a steady-state portion of a trajectory
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diminshes as
√

t, at a rate slower than that of the error in the approximation of Ω̄t with Ω̄ss
t .

Consequently, we can approximate Ωt in the FT (see eqn 1) with the steady-state dissipation

function Ωss
t , leading to the SSFT:

lim
t→∞

P (Ωss
t = A)

P (Ωss
t = −A)

= exp (A). (15)

In this way, the SSFT is an approximation to the FT that is accurate in the long time limit,

i.e., when the transient contribution to the dissipation function becomes negligible, and well

before the fluctuations in Ωss
t vanish along steady-state trajectories. As Ωt(Γ) cannot be

easily expressed for steady-state trajectories, it is approximated specifically for the Wang

experiment by

Ωss
t (Γ) =

1

kBT

∫ t

0

ds(fopt · vopt), (16)

where the time integration starts under steady-state conditions. Ωss
t (Γ) will satisfy the

SSFT, or equivalently, will satisfy the FT asymptotically in the long time limit. It is im-

portant to note that the asymptotic limit results from our inability to express distributions

of states other than equilibrium.

Stochastic derivation of the dissipation function for steady-state trajectories

For some systems described using stochastic dynamics, it is possible to construct distri-

butions of trajectories that are wholly in a non-equilibrium steady-state. The motion of a

system under stochastic dynamics is no longer described by the set of coordinates and mo-

menta of all constituent molecules, but is reduced to coordinates, say in the case of the Wang

experiment, of the colloidal particle, r(t) = rt. Unlike Newtonian dynamics, the stochastic

equations of motion cannot be used to construct conjugate pairs of trajectories through

time-reversal, as the stochastic force is Markovian. Moreover, as the particle position is not

unique to any given trajectory, there exist infinitely many trajectories that originate at r0

and a subset of these arrive at a given destination rt at time t. Let {r0, rt} represent those

stochastic trajectories that evolve from r0 to rt, and let {rt, r0} represent a conjugate set of

“backward” trajectories evolving from rt to r0. Letting P (r0, rt) and P (rt, r0) represent the

normalised probability distribution of a set of forward trajectory and respective backward

trajectories, then by analogy with eqn 3, Reid et al. expressed the stochastically-determined
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dissipation function as

Ωt(r) = ln

[

P (r0, rt)

P (rt, r0)

]

. (17)

As above, we incorporate r as an argument to the dissipation function, Ωt(r), to signal that

the dissipation function is derived using stochastic dynamics.

To illustrate eqn 17 with a specific system, consider a stochastic description of the colloidal

particle in a harmonic potential that is translated with velocity vopt,

ξ
dr

dt
= −k(r − voptt) + g(t), (18)

where r is the coordinate of the colloidal particle, in a fixed coordinate frame whose origin

is the trap center at t = 0, ξ is the friction coefficient, k the trapping constant, and g(t) is

uncorrelated Gaussian noise with zero mean and 〈g(t)g(t′)〉 = 2ξkBTδ(t−t′). It is convenient

to transform this stochastic equation into a different coordinate system, x, that translates

according to r = x + voptt − ξvopt/k. The equation of motion in the translating-coordinate

frame, x is then

ξ
dx

dt
= −kx + g(t). (19)

This is the equation for a particle in a stationary parabolic potential and it has a well-known

and simple Green or propagator function:

G(x,x0, t) =

√

k

2πkBT (1 − exp (−2t/τ))
exp

(

− k(x − x0 exp (−t/τ))2

2kBT (1 − exp (−2t/τ))

)

(20)

where τ ≡ ξ/k is the typical timescale of the motion. This expression is the probability

distribution associated with the particle, initially located at x0, being located at x some

time t later. In the limit of large t, this reduces to the equilibrium Boltzmann distribution

PB(x) =

√

k

2πkBT
exp

(

− kx2

2kBT

)

(21)

Thus, at long times, or in steady-state, the distribution of particle positions, x, in a sta-

tionary trap is identical to the distribution of particle positions relative to the trap centre

that translates according to voptt− ξvopt/k; i.e., the distribution of steady-state positions is

dragged along by the trap, but always lags a distance ξvopt/k behind the trap centre. The

expressions for distributions of trajectories that initiate and remain at steady-state is thus

straightforward:

P (r0, rt) = PB(x0 = r0 + ξvopt/k)×G(xt = rt − voptt + ξvopt/k,x0 = r0 + ξvopt/k, t). (22)
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Thus, from the defining eqns 17 and 22, the dissipation function, expressed for a steady-state

trajectory of duration t is exactly[9]

Ωt(r) =
kvoptt

kBT
· (rt − r0)

(1 − exp (−t/τ))
(23)

As we demonstrate in Section IV, this dissipation function will satisfy the FT under nonequi-

librium steady-state conditions, including short times. In our experiment we measure and

record the trajectories of a colloidal particle, evaluating the approximate and exact dissipa-

tion functions, Ωss
t (Γ) and Ωt(r), respectively, from the same sets of steady-state trajectories.

III. EXPERIMENTAL SETUP

The equipment used to generate the particle trajectories is similar to that used in the

original drag experiment of Wang et al [6]. It consists of a Nikon DIAPHOT 300 inverted

microscope equipped with a 100× (N.A.=1.3) oil-immersion objective lens and a 1W infrared

laser (λ = 980 nm) for trapping micron-sized particles, a servo-motor controlled microscope

stage with fine piezo-controlled translation in the x − y plane, and a quadrant photodiode

sensor for detection of particle position with resolution 15 nm. Laser power, objective focus,

and servo-motor controlled motion of the microscope stage are controlled though computer

interfaces developed by Cell Robotics Inc. USA. Fine translation of the microscope stage

is achieved by feeding the voltage signal from an arbitrary function generator (TGA1242,

Thurlby Thander Inst.,UK) to the stage-mounted piezocrystals.

Approximately 50 particles (6.3 µm in diameter) were added locally into a stage-mounted,

glass-bottomed cell, containing a 3.0 ml solution of 10mM Tris-HCl+1mM EDTA, main-

tained at a pH of 7.5. One particle was optically trapped, isolated from the other particles,

and used to calibrate the quadrant photodiode detector and optical trap strength. The

optical trapping constant, k, was determined by sampling the particle’s position in a sta-

tionary trap for 120 seconds at 200 Hz (1 kHz ?) and applying the equipartition theorem:

k = kBT/〈r2〉. Particle trajectories, i.e. particle position versus time, were then constructed

and recorded as the stage was translated in one of two ways: a sequence of linear translations

or a continuous circular translation.

An ensemble of particle trajectories was generated by linearly translating the microscope

stage in a square velocity profile: the stage was stationary for 5 seconds, translated at
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−vopt = 0.29 µm/s for 20 seconds, stationary for another 5 seconds, and then translated

−vopt = −0.29 µm/s for an additional 20 seconds. This sequence was repeated for up to

400 cycles with simultaneous recording of the particle position at millisecond intervals. The

time over which the stage is stationary is sufficiently long compared to the relaxation time of

the colloidal particle in a stationary harmonic potential, τ ≡ ξ/k = 120 ms (where k = 0.48

pN/µm for these linear trajectories), so that the particle position was distributed in the trap

according to equilibrium conditions at the start of stage translation. During the first 10 s

of translation, the particle position, measured relative to the trap center, follows neither

an equilibrium nor steady-state distribution. During this transient period, the measured

particle position was used to analyse the dissipation function under transient conditions, as

was originally achieved by Wang et al. For the remainder of the translating wave, 10< t <20

s, the distribution of particle positions follows a time-independent, steady-state distribution:

this portion of the particle trajectory was used to construct the steady-state dissipation

functions.

A single long trajectory was generated by continuously translating the microscope stage

in a circular path. This was achieved by feeding synchronised sine and cosine voltage waves

to two perpendicular piezo crystals attached to the microscope stage. The radius of the

circular motion was 7.3 µm and the frequency of the circular motion was 4 mHz. At this low

velocity, corresponding to a tangential trap velocity of −vopt = 0.18 µm/s, the stage motion

can be treated simply as a long linear translation. The trapping constant was determined

to be k = 0.12 pN/µm and the relaxation time of the stationary system was τ =0.48 s. This

single long trajectory is advantageous for studying steady-state trajectories as it maximises

the amount of steady-state data; only the first few seconds of the initial, transient trajectory

are discarded from the steady-state analysis. The long trajectory was evenly divided into 75

second long, non-overlapping time intervals, then each interval was treated as an independent

steady-state trajectory from which we constructed the steady-state dissipation functions.

This circular drag experiment allowed us to analyse the steady-state dissipation function

over longer times, up to 75 s, than in the case of the shorter linear drag experiment which

afforded only 10 seconds of nonequilibrium steady-state data. However, as we collected

only one trajectory, the circular drag experiment cannot be used to analyse the dissipation

function under transient conditions.

It is important to recognise that two different sets of experimental data were collected:
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trajectories where the stage is linearly translated, and another where the stage is circularly

translated. Furthermore, for each set of trajectories, we analyse both steady-state dissipation

functions, i.e., eqn 8 derived from deterministic dynamics, and eqn 23 derived from stochastic

dynamics. To demonstrate experimentally the FT/SSFT, we present our data in terms of

the integrated fluctuation theorem (IFT), a form of the theorem that compares total positive

to total negative dissipation:

P (Ωt < 0)

P (Ωt > 0)
= 〈exp (−Ωt)〉Ωt>0, (24)

where Ωt is given by the dissipation function, Ωt(Γ), the steady-state dissipation function

Ωt(r), or the transient analog of Ωt(r) given in [9]. For the SSFT, we can analogously express

an integrated form as

lim
t→∞

P (Ωss
t < 0)

P (Ωss
t > 0)

= 〈exp (−Ωss
t )〉Ωss

t >0. (25)

where, again, Ωss
t , is an approximate form of the steady-state dissipation function, given by

Ωss
t (Γ), eqn 16.

IV. EXPERIMENTAL RESULTS

Figure 2 shows the integrated form of the FT evaluated from a set of 400 trajectories of

a colloidal particle in a linearly translated optical trap. In Figure 2(a), the FT is analysed

using the deterministically-determined dissipation function evaluated from an initial equi-

librium state, Ωt(Γ) =
∫ t

0
ds(fopt · vopt). That is, the dissipation function is accumulated for

each trajectory, starting from t = 0, when the particle is equilibrated in the stationary trap

and the trap translation is initiated, to some time t after the stage begins to translate. The

time dependence of the LHS and RHS of the IFT (P (Ωt(Γ)<0)
P (Ωt(Γ)>0)

and 〈exp (−Ωt(Γ))〉Ωt(Γ)>0, re-

spectively) are, to within experimental error, identical as predicted by the FT. Data similar

to that shown in Figure 2(a) was first published in Wang et al. as an experimental demon-

stration of the transient application of the Fluctuation Theorem using a nearly identical

experiment.

In Figure 2(b), the steady-state portions of the same 400 trajectories are used to construct

the approximate steady-state dissipation function, Ωss
t (Γ). Here, the first 10 seconds of each

trajectory, corresponding to the transient response of the system to the step change in stage

translation, is discarded and the remaining trajectory segments are used to construct the

13
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FIG. 2: (Colour online) Integrated FT results from a single set of 400 linear drag experiments

where the argument of the FT is the determinstically-derived dissipation function,
∫ b
a ds(fopt ·vopt).

The optical trapping constant is k = 0.48 pN/µm, stage velocity −vopt =0.29 µ/s, and the 6.3

µm colloidal particle’s position is sampled at 1 kHz over 20 s trajectories. In (a) the dissipation

function is accumulated, starting from an initial resting (equilibrium position) in accord with the

exact form of Ωt(Γ). That is the trajectories analysed include transient response to the initiation

of trap translation from a = 0 to b = t. The LHS of the IFT, P (Ωt(Γ)<0)
P (Ωt(Γ)>0) (− • −), and RHS of the

IFT, 〈exp (−Ωt(Γ))〉Ωt(Γ)>0 (−4−), are plotted against time, t, or the duration of the trajectory.

Also shown is a prediction of P (Ωt(Γ)<0)
P (Ωt(Γ)>0) versus t (blue line) from stochastic dynamics, eqn 26. Inset

is [ln (LHS) − 1]/[ln (RHS) − 1] versus t for data (− • −) and from the FT prediction of unity

(line). In (b) the dissipation function Ωss
t (Γ) is accumulated from a = 10 seconds after the start

of stage translation and accumulated for a further t seconds to b = 10 + t. That the system is at a

steady-state after 10 seconds of stage translation is justified by the value of τ = 120 ms. The LHS

of an integrated-form of the SSFT,
P (Ωss

t (Γ)<0)
P (Ωss

t (Γ)>0) (− • −) , and the RHS of the integrated-form of

the SSFT, 〈exp (−Ωss
t (Γ))〉Ωss

t (Γ)>0 (−4−), are plotted against the segment time, t. Inset shows

[ln (LHS) − 1]/[ln (RHS) − 1] versus t against the FT prediction (line).
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approximate steady-state dissipation function, Ωss
t (Γ) =

∫ t+10

10
ds(fopt ·vopt). These truncated

trajectory segments are characterised as steady-state, as the initial 10 seconds of discarded

data far exceeds the relaxation time of the stationary system, τ ≡ ξ/k = 120 ms. As

shown in the Figure 2(b), the analogous LHS and RHS of the theorem,
P (Ωss

t (Γ)<0)

P (Ωss
t (Γ)>0)

and

〈exp (−Ωss
t (Γ))〉Ωss

t (Γ)>0, agree only at larger time segments (t > 2 s). This is in accord with

the approximate form of Ωss
t for which the FT holds only in the asymptotic time limit, or

in accord with the SSFT, eqn 2.

As we are comparing functions which approach zero at long times, the equivalence of

the LHS and RHS can be more easily viewed when the experimental data is replotted as

[ln (LHS)− 1]/[ln (RHS)− 1] versus t (inserts of Figure 2). The FT prediction is shown as

a line in both insets. The FT written for the full dissipation function, Ωt(Γ), is obeyed at

all time whilst the FT cast using the approximate steady-state dissipation function, Ωss
t (Γ),

is obeyed only in the long-time limit. Note that the asymptotic limit of the SSFT is met

while Ωss
t (Γ) is appreciably larger than zero. A very similar result to Figure 2(b), was

recently shown by Garnier & Ciliberto who found that the steady-state dissipative power of

a resistor/capacitor in parallel, driven out of equilibrium by small current, follows the SSFT

[10].

The form of the curves of Figure 2(a) can be determined from the probability distribu-

tions associated with observing trajectories of duration t having dissipation function Ωt(Γ),

P (Ωt(Γ)). In Appendix 1, we derive expressions for P (Ωt(Γ)) as well as the resulting form

of the integrated FT,

P (Ωt(Γ) < 0)

P (Ωt(Γ) > 0)
=

1 − erf(1
2

√

ω(t))

1 + erf(1
2

√

ω(t))
, (26)

where

ω(t) = F2

[

t

τ
− (1 − e−

t
τ )

]

and F2 = ξ2v2
opt/(kkBT ). F is a dimensionless measure that characterises the opposing

forces acting on a particle localised in the optical trap and is given as the ratio of the lag

distance, ξ | vopt | /k, to the typical particle position within the trap, given by equiparti-

tion as
√

kBT/k. For translating trap experiments with different trap velocities and trap

strengths, F2 is a convenient measure of the relaxation time of the translating trap. If the

trap is stationary, then F2 = 0 and the relaxation time is simply τ = ξ/k; for translating

trap systems, the larger F2, then trajectories with negative dissipation functions persist
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over longer times. The prediction, eqn 26, did not compare favourably with the original

experimental results of Wang et al [6], presumably because of unaccounted forces in that

original experiment. However, as Figure 2(a) shows, the experimental results presented here

compare very favourably to this stochastic prediction.

For steady-state trajectories where the approximate dissipation function, Ωss
t (Γ) is used,

the functional form of the asymptotic approach to the FT can also be constructed analyti-

cally, using the analytic distribution P (Ωss
t (Γ)) derived in Appendix 2. The distribution of

Ωss
t (Γ) is Gaussian for all t, and, in order for Gaussian distributions to obey the FT, the

magnitude of the variance of the distribution must be twice the mean of the distribution.

From distribution functions constructed from stochastic dynamics, we show in the appendix

that the ratio of the variance in the distribution, σ2
Ωss

t (Γ) to the mean of the distribution,

〈Ωss
t (Γ)〉, approaches 2 according to

〈Ωss
t (Γ)〉

σ2
Ωss

t (Γ)

= 2 ×
[

1 − τ

t

(

1 − exp
(

− t

τ

)

)]

(27)

Because of strong sensitivity of the variance to the size of the system, we cannot easily

compare eqn 27 with the limited number of experimental trajectories. Eqns 26 and 27

further emphasize that the FT does not predict the timescales over which Ωt < 0, or in

language of Wang et al, over which “entropy-consuming” trajectories are observable. The

governing equations of motion and the distributions of initial states determine these time

and length scales.

Figure 3 demonstrates the integrated form of the FT using steady-state segments from

a single, circular drag trajectory to calculate the approximate steady-state dissipation func-

tion, Ωss
t (Γ). As the duration of the single trajectory is considerably longer than that of the

linear drag trajectories, we are able to construct Ωss
t (Γ) for segment times of 75 seconds, as

compared with only 8-10 seconds in the linear drag case. Consequently, agreement of the

LHS and RHS is shown over a signficantly longer time scale in the circular drag experiment.

Figure 3 shows the first 10 seconds of data and the inset shows the data replotted in the

form, [ln (LHS)−1]/[ln (RHS)−1]: like the linear drag results, there is a lack of equivalence

of the LHS and RHS over short segment times, as anticipated from the SSFT.

In Figure 4, we have re-analysed the same experimental data, using the stochastically-

derived dissipation function, Ωt(r) of eqn 23. This dissipation function is exact; i.e. there are

no approximations made in going from its fundamental definition, eqn 17 to its closed-form
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FIG. 3: (Colour online) Integrated FT results from a single circular drag trajectory using the

approximate, steady-state dissipation function Ωss
t (Γ) =

∫ a+t
a ds(fopt · vopt), where a takes on

values of multiple values of 75 seconds, plotted for time ranges (a) 0 ≤ t ≥ 75 seconds, and (b)

0 ≤ t ≥ 10 seconds. The optical trapping constant is k = 0.12 pN/µm, the stage is circularly

rotating with a diameter of 14.6µm at 4 mHz, corresponding to a tangential velocity of 0.18 µm/s,

and the 6.3 µm colloidal particle’s position is sampled at 1 kHz over the single trajectory. As

the ratio of the dimensionless measure F2 of the circular and linear translating trap experiments

is F2
circular/F2

linear = 1.5, “entropy-consuming” trajectories persist over a longer time scale in

the circularly translated experiments with Ωss
t (Γ) < 0 for t up to 50 seconds. The LHS of an

integrated-form of the SSFT,
P (Ωss

t (Γ)<0)
P (Ωss

t (Γ)>0) (− • −) , and the RHS of the integrated-form of the

SSFT, 〈exp (−Ωss
t (Γ))〉Ωss

t (Γ)>0 (−4−) , are plotted against the segment time, t. Inset shows

[ln (LHS)− 1]/[ln (RHS)− 1] versus t against the FT prediction (line); further demonstrating the

lack of equivalence at short times, due to the approximate dissipation function.
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expression. The LHS and RHS of the FT are constructed using Ωt(r) and plotted versus seg-

ment time in Figures 4 (a), for the linear drag data, and (b) for the circular drag experiment.

Both show that the FT holds over all time, including short times. The decay time of the

fluctuations at steady-state is longer for the circular trajectories (i.e. “entropy-consuming”

trajectories persist over longer time scales), indicative of F2
circular/F2

linear = 1.5. The in-

sets of the figures more clearly show that the FT holds over all segment times, including

short segment times, when the steady-state dissipation function is expressed exactly, using

stochastic dynamics, Ωt(r). This is in contrast to the deterministically-derived steady-state

dissipation function, Ωss
t (Γ), for which the theorem does not hold over short time segments.

CONCLUSIONS

In this paper, we demonstrate experimentally the application of the FT under nonequi-

librium steady-states for all times, using a colloidal particle localised in a translating optical

trap. Starting from the fundamental definition of the dissipation function as a measure of

trajectory reversibility, we construct closed-form expressions for the dissipation function, Ωt,

using both deterministic or Newtonian dynamics and stochastic or Langevin dynamics, and

evaluate each of the experimental trajectories using these two expressions for Ωt. Under

steady-state conditions, it has not proven possible to construct an exact expression for the

dissipation function using deterministic dynamics, and it is necessary to approximate the

steady-state dissipation function with its form in the asymptotic time limit, Ωss
t (Γ). Conse-

quently, when Ωss
t (Γ) is used as an argument in the FT, the FT holds only in the long time

limit: indeed the FT written in this asymptotic time limit is referred to in the literature

as a separate theorem, the Steady-state Fluctuation Theorem or SSFT. In contrast, when

a closed-form expression of the steady-state dissipation function is derived exactly using

stochastic, Langevin dynamics, then the FT holds over all time. This suggests that the

asymptotic limit in the SSFT is simply due to approximations in the argument of the theo-

rem, and that when the argument of the theorem is derived exactly, the FT is operative over

all time. However, it is important to recognise that it may not always be possible to con-

struct exact, closed-form expressions for steady-state dissipation functions using stochastic

dynamics, and in such cases approximate dissipation functions are necessary.
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FIG. 4: (Colour online) Integrated FT results from (a) 400 linear drag trajectories, and (b) a

single circular drag trajectory, using an exact expression for the steady-state dissipation function,

derived from stochastic dynamics, Ωt(r). The experimental details are given in the captions of

figures 2 and 3. The LHS of an integrated-form of the FT, P (Ωt(r)<0)
P (Ωt(r)>0) (−•−) , and the RHS of the

integrated-form of the FT, 〈exp (−Ωt(r))〉Ωt(r)>0 (−4−) , are plotted against the segment time, t.

Inset shows [ln (LHS) − 1]/[ln (RHS) − 1] versus t against the FT prediction (line)
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APPENDICES

1. Derivation of a closed-from expression for P (Ωt < 0)/P (Ωt > 0) for transient

trajectories of a particle in a translating trap.

We are interested in deriving a closed-from expression for P (Ωt < 0)/P (Ωt > 0), where

Ωt is taken to be the determinsitically-derived dissipation function

Ωt ≡ Ωt(Γ) =
1

kBT

∫ t

0

ds(fopt · vopt). (28)

(In this appendix, we have shortened notation, dropping the argument of the dissipation

function such that Ωt(Γ) is written as Ωt. All trajectories are described deterministically.)

The form of the LHS or RHS of the FT depends upon the distribution of trajectories with

given values of Ωt. In this Appendix we derive an expression for the distribution P (Ωt), and

hence an expression for P (Ωt < 0)/P (Ωt > 0), using stochastic dynamics. It is important

to recognise that the dissipation function is derived under deterministic dynamics; however,

the functional form of the distribution of trajectories is derived using stochastic dynamics.

For simplicity, we cast our derivation in one dimension; an extension to higher dimensions

is straightforward.

From the distribution of particle positions, we can construct a distribution of Ωt at any

given time, t. Noting that fopt + frand + fdrag = 0, i.e. fopt = ξdr/dt − g(t), and using this

in the definition and integrating gives

Ωt =
−ξv

kBT
(δ(t) − (r(t) − r(0))) (29)

where r(0) is the initial position of the particle and δ(t) is δ(t) = ξ−1
∫ t

0
dsg(s). Physically the

two terms in Ωt can be identified as following: the δ(t) contribution arises from the random

forces alone and the second term, proportional to r(t)−r(0) represents the contribution from

the integrated drag force. It is important to note that these two terms are not independent,

since the displacement at any time depends upon the history of the random forces. We can

re-express this in terms of the moving coordinate system x using r = x + vt − ξvopt/k and

r0 = x0 − ξvopt/k. The dissipation is then

Ωt = − ξv

kBT
(δ(t) − x(t) − voptt + x0) (30)
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We already know the distribution of x0 (it is an equilibrium, Boltzmann distribution). What

we require is the distribution of w(t) ≡ x(t)−δ(t), since if we know this we can then construct

the distribution of Ωt and hence everything about the problem. We know how to solve the

stochastic differential equation for x(t): its solution is

x(t) = x0 exp(−t/τ) + ξ−1

∫ t

0

dt′ exp(−(t − t′)/τ)f(g′). (31)

Hence the solution for w(t) (which is just x(t) minus the sum of the random displacements)

is

w(t) = x0 exp(−t/τ) + ξ−1

∫ t

0

dt′[exp(−(t − t′)/τ) − 1]g(t′). (32)

Now we see w is simply the sum of a number of terms, all of which are Gaussian. Hence w

itself has a Gaussian distribution:

Gw(w, x0, t) = (2πB(t))−1/2 exp(−(w − A(t))2/(2B(t))) (33)

Here Gw(w, x0, t) is the probability of finding w(t) given that x = x0 at time t = 0. To

determine the mean A(t) is simple: A(t) = 〈w(t)〉 = x0e
−t/τ where the <> is an ensemble

average. B(t) may be determined as follows:

B(t) = 〈(w(t) − A(t))2〉 = ξ−2

∫ t

0

dt1

∫ t

0

dt2[e
−

t−t1
τ − 1][e−

t−t2
τ − 1]〈g(t1)g(t2)〉 (34)

Noting that the noise correlation is a delta function allows one to readily integrate this so

that

B(t) =
kBT

ξ
[2t + 4τe−

t
τ − τe−2 t

τ − 3τ ]. (35)

The initial distribution of x0 is the Boltzmann distribution and is

Px0
(x0) =

√

k

2πkBT
exp(− k

2kBT
(x0 −

ξvopt

k
)2). (36)

This gives us directly the probability distribution for the dissipation, since w =

kBTΩt/ξvopt + x0 − voptt. Integrating over x0 yields

PΩt
(Ωt) =

kBT

ξvopt

∫

∞

−∞

dx0Gw(
kBTΩt

ξv − opt
+ x0 − voptt, x0, t)Px0

(x0) (37)

Introducing the function

ω(t) = F2[
t

τ
− (1 − e−

t
τ )] (38)
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allows us to write the distribution function for the dissipation as

P (Ωt) =
1

2
(πω(t))−1/2 exp[− 1

4ω(t)
(Ωt − ω(t))2] (39)

From this the FT is easily verified, P (Ωt)/P (−Ωt) = exp(Ωt). The probabilities of positive

and negative dissipation paths are

P± =
1

2
± 1

2
erf(

1

2

√

ω(t)) (40)

From these the IFT is easily verified.

Note that P (Ωt) is Gaussian with a mean (and peak) ω(t) and width ∼
√

ω(t). The peak

always moves towards positive Ωt. At long times it does this linearly in time at a speed

ξv2
opt/(kBT ). This speed is independent of the well strength k, and has a simple physical

interpretation - it is just the dissipation production assuming the particles are dragged

along at speed vopt. At short times the dissipation peak moves more slowly as 1
2

ξv2
opt

kkBT
( t

τ
)2

(corresponding to diffusive motion). At long times we have ω(t) =
ξv2

opt

kBT
t − ξ2v2

opt

kkBT
where the

first term arises from the dissipation production in steady state (alluded to above) and the

second term is due to the initial transient.

2. Derivation of the ratio of the mean to variance of the distribution P (Ωss
t )

Our aim is to derive an expression for P (Ωss
t ) where Ωss

t is the deterministically-derived

steady-state dissipation function

Ωss
t ≡ Ωss

t (Γ) =
1

kBT

∫ t

0

ds(fopt · vopt) (41)

where the time integral is taken over steady-state conditions. (In this appendix, we have

shortened notation, dropping the argument of the dissipation function such that Ωss
t (Γ) is

written as Ωss
t . All trajectories are described deterministically.) That is, the optical trap

has been moving for some time and the particle is located at its steady-state position for

the entire observation time, t. As the transient Ωt satisfies the FT, Ωss
t satisfies the FT only

in the long time limit.

The derivation of the distribution P (Ωss
t ) is similar to that of P (Ωt) given in Appendix 1.

The only difference is that the distribution of initial positions is no longer the equilibrium
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distribution of positions in a stationary trap, eqn 36. Instead, the initial distribution is that

of a particle in equilibrium in the moving coordinate frame,

Px0
(x0) =

√

k

2πkBT
exp (− kx2

0

2kBT
). (42)

Solving eq 37 using the above equation for Px0
(x0) yields a Gaussian distribution of Ωss

t :

PΩss
t

(Ωss
t ) =

1
√

2πσ2
Ωss

t

exp (−(Ωss
t − Ω̄ss

t )2

2σ2
Ωss

t

) (43)

where the mean value of the distribution, Ω̄ss
t , is

Ω̄ss
t =

k

kBT
(voptτ)2(

t

τ
) (44)

and the variance in the distribution, σ2
Ωss

t
is

σ2
Ωss

t
=

2k

kBT
(voptτ)2(

t

τ
− 1 + exp (−t/τ)). (45)

For Gaussian distributions to obey the FT, the variance of the distribution must be exactly

twice the mean. Here, for the distribution of Ωss
t , the ratio of the variance to mean is

Ω2(t)

〈Ωss
t 〉 = 2 × [1 − τ

t
(1 − exp (−t/τ))], (46)

so that only in the limit of the t >> τ will the FT be valid, in accord with what is known

about the SSFT.
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