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Jarzynski and Crooks have recently shown that equilibrium free energy differences can be
computed from non-equilibrium thermodynamic path integrals. In the present paper we give a
new derivation of this extraordinary relation. Our derivation which is valid for time reversible
deterministic systems highlights the close relationship between the non-equilibrium free energy
theorems and the fluctuation theorem.

1. Introduction

The fluctuation theorems (FTs) [1–9] give formulae
for the logarithm of the probability ratio that the time
averaged dissipative flux takes a value B to minus that
value, �B, in non-equilibrium systems. A subset of
these theorems, known as transient fluctuation theorems
(TFTs), compute these finite time probability ratios for
systems which start at t¼ 0, from some known initial
distribution—usually an equilibrium distribution. A
TFT has recently been successfully tested in laboratory
experiments employing optical tweezers [10]. In the
present paper we derive a TFT for non-equilibrium
transitions between two equilibrium states. The resulting
formulae are not new, having been derived earlier by
Jarzynski [11] and Crooks [12]. However, almost all of
the work carried out by Crooks and Jarzynski was for
stochastic systems. Our derivation is applicable to
realistically thermostatted, time reversible, deterministic
systems.
These equilibrium-to-equilibrium TFTs relate the dis-

tribution of thermodynamic work done along all possible
time reversible, non-equilibrium paths connecting the
equilibrium systems, to differences in the free energy of
the two equilibrium states. Thus we term these relations
non-equilibrium free energy theorems (NEFETs).

2. Derivation

Consider two N-particle equilibrium systems with
coordinates and peculiar momenta, {q1, q2, . . .qN,
p1, . . .pN}� (q, p)�!. The systems are described by
Hamiltonians H1(!), H2(!). The systems are of volume
V and are assumed to include a heat bath maintained at
a temperature T. Thus we can characterize the phase
space distributions of the two systems by the

appropriate canonical distributions, f1(!), f2(!)

fið!Þ �
exp ½��Hið!Þ�Z
dG exp ½��Hið!Þ�

; i ¼ 1;2; ð1Þ

with corresponding Helmholtz free energies,

Ai ¼�kBT ln

Z
dG exp ½��Hið!Þ�

� �
: ð2Þ

Consider a transformation from H1 to H2. We call this
the forward (F) direction for the transformation and we
denote the reverse direction by the symbol R. Consider,
for example,

Hð!; tÞ ¼H1ð!Þð1� �ðtÞÞ þH2ð!Þ �ðtÞ; 0< t< � ð3Þ

with

_��F;R ¼

1

�
; 0< t< �: ð4Þ

The choice of the actual pathway in the transformation
fromH1 toH2 is, as we shall see, extraordinarily general.
It need not be the simple linear pathway as in (3) and (4).
Thus, equations (3) and (4) are simply a convenient exam-
ple of such a pathway. The equations of motion for the
system in the time interval (0, �) are assumed to be [13],

_qqi ¼
@Hð!; tÞ

@pi
;

_ppi ¼�
@Hð!; tÞ

@qi
�Si�ð!Þpi;

_��F;R ¼

1

�
;

ð5Þ

where � is the thermostat multiplier [13] which in this
case is applied to fix the kinetic temperature of the* e-mail: evans@rsc.anu.edu.au
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thermostatting walls at a temperature T,

XN
i¼1

Si
p2i
2m

¼
XNw

i¼1

p2i
2m

¼
3NwkBT

2
: ð6Þ

For simplicity we assume all particles have the same
mass m. Boltzmann’s constant is denoted as kB. Si is a
switch that controls which particles are thermostatted.
We assume particles labelled i from 1 to Nw comprise
thermostatting walls. The remaining particles Nwþ 14
i4N, comprise the system of interest. We can also
consider homogeneously thermostatted systems in which
all the particles are thermostatted, that is Nw¼N. For
wall-thermostatted systems it is natural to assume that
the wall particles are unaltered in the transformation
H1!H2.
We define a work function W as [9],

�Wð�Þ ¼ �ðW2�W1Þ

¼ �½Hð�Þ �Hð0Þ� �

Z �

0

dsLðsÞ ð7Þ

where the phase space compression factor is defined as

L�
@

@!
� _!!; ð8Þ

and �� 1/kBT. The Liouville equation for the N-particle
phase space distribution function f (!, t) of the system
can be written as [13],

df ð!; tÞ

dt
¼�f ð!; tÞLð!Þ ¼ 3Nw�ðtÞ f ð!; tÞ þOð1Þ; ð9Þ

where we used the equations of motion to evaluate the
phase space compression factor.
We seek an expression for the probability ratio that

in the transition (1! 2) (i.e. in the forward direction)
the work function takes a value B compared with the
probability that starting from system 2, the change in
the work function for the reverse process (2! 1), takes
a value �B.
From figure 1 we can see that since the Jacobean of the

time reversal map MTðMTðq; p; _��Þ ¼ ðq;�p;� _��ÞÞ is
unity, the volume elements dGT0 ð�Þ; dG0ð�Þ have the
same measure. Since the equations of motion are time
reversible,

dG0ð�Þ=dG0ð0Þ ¼ dGT
0 ð�Þ=dG

T
0 ð0Þ: ð10Þ

Clearly also, the work function will take on opposite
values for the forward and reverse trajectories. We have
drawn figure 1 as though there is only one contiguous
region in system 1 for which W(t)¼B,dB. However,
this will not usually be so. Usually there will be multiply
disconnected regions within which trajectories originate
with the required path integral values.

Obviously for finite �, the intermediate states are not
in equilibrium. We assume that no matter how far from
equilibrium the trajectories may be inmid transition, they
nevertheless must originate and terminate in equilibrium
systems. This places a constraint on the transformation
H1!H2 (3, 4), at least near both end points. Thus we can
compute the required probability ratio,

PrFðW¼BÞ

PrRðW¼�BÞ

¼

X
f!0jWð�Þ¼B;dBg

dG0ð0Þexp ��H1ð!0ð0ÞÞ½ �

.Z
dG exp½��H1�

X
f!0jWð�Þ¼B;dBg

dGT
0 ð�Þexp½��H2ð!

T
0 ð�ÞÞ�

.Z
dGexp½��H2�

¼

e�A1
X

f!0jW ð�Þ�B;dBg

dG0ð0Þ exp½��H1ð!0ð0ÞÞ�

e�A2
X

f!0jWð�Þ¼B;dBg

dG0ð�Þ exp½��H2ð!0ð�ÞÞ�

¼

e��A
X

f!0jWð�Þ¼B;dBg

dG0ð0Þ exp ½��H1ð!0ð0ÞÞ�

X
f!0jWð�Þ¼B;dBg

dG0ð0Þ

�exp
h
�

Z �

0

ds3Nw�ðsÞds��fH1ð!0ð0ÞÞ

þWð�Þ�

Z �

0

ds3NwkBT�ðsÞ dsg
i

2
666666664

3
777777775

¼

e��A
X

f!0jW ð�Þ¼B;dBg

dG0ð0Þ exp½��H1ð!0ð0ÞÞ�

X
f!0jWð�Þ¼B;dBg

dG0ð0Þ exp½��fH1ð!0ð0ÞÞþWð�Þg�

¼

e��A
X

f!0jWð�Þ¼B;dBg

dG0ð0Þ exp½�Wð�Þ�

X
f!0jWð�Þ¼B;dBg

dG0ð0Þ

¼e��Ae�B: ð11Þ

Figure 1. A trajectory bundle within the phase space for
system 1 which has the specified value for the change in
the work function, B� dB<W(�)<Bþ dB. The figure
also shows the conjugate bundle of antitrajectories which
necessarily have the corresponding negative values of the
change in the work function. In practice there may be
numerous non-contiguous trajectory bundles which each
have the same value of the change in the work function.
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All the sums in (11) are computed over contiguous
trajectory bundles each of which is centred on !0(0) or
!0(�) and have volumes dG0(0), dG0(�) respectively.
The first line of (11) assumes the two end states are in

thermal equilibrium and are describable by the canonical
probability distributions. It also assumes that the system
(5) is time reversible and that the starting phases for the
reverse pathways can be obtained from a time reversal
map applied to the end phase of the conjugate, forward
pathway. We use (2) and (10) to obtain the second line.
We also use the fact that all Hamiltonians considered
here are invariant under the time reversal mapping. The
third line uses (9) to obtain the relationship between
dG0(�) and dG0(0) and also uses the equations of motion
to relate H2(!0(�)) to H1(!0(0)). Line 4 involves simple
algebraic manipulation, as does line 5.
This non-equilibrium work relation was first derived

by Crooks [12] for stochastic transitions. We refer to
equation (11) as a non-equilibrium free energy theorem
(NEFET). It shows how equilibrium free energy
differences, in this case the Helmholtz difference A�

A2�A1, can be computed by non-equilibrium thermo-
dynamic path integrals. Although the paths may be far
from equilibrium, it is essential that near both end
points sufficient time must be allowed for the establish-
ment of the two equilibrium end states.
From (11) a simple algebraic rearrangement shows

that,

Z þ1

�1

dBPrF ðW ¼ BÞe��B

¼ e��A

Z þ1

�1

dB PrR ðW ¼�BÞ ð12Þ

thus,

he��W iF ¼ e��A; ð13Þ

where the subscript F denotes the fact that the change
in the work function is computed relative to the
‘forward direction’ (i.e. 1! 2) thus, W¼W2�W1.
This NEFET (13) was first derived by Jarzynski [11]. Its
relationship to the stochastic TFT was first clarified by
Crooks [12].

3. Discussion

It is extraordinary that differences in an equilibrium
thermodynamic state function can be computed from
sets of non-equilibrium thermodynamic path integrals.
These differences are independent of the actual non-
equilibrium pathways. The two equilibrium thermody-
namic states could be connected by pathways other than
the linear Hamiltonian transformation given by (3) and
(4). In fact an S-shaped pathway would be more efficient

than the linear pathway given in (3) and (4). Provided
the pathways are continuous and allow the construction
of time reversible reaction paths, the final expressions
for the NEFETs ((11) and (13)) are unchanged. The
NEFETs therefore generalize the concept of path
independent state functions, outside the domain of
purely equilibrium pathways.
Some comments are required regarding the thermo-

stats. If the NEFETs are meant to describe experimental
systems then we need to employ (as above) wall
thermostats. While it is true that the Gaussian isokinetic
equations are ‘unnatural’, the Gaussian thermostats
can, as we have argued before [9], be embedded in walls
that are arbitrarily remote from the physical system of
interest. If this is the case, then it is clear that there is no
way that the system of interest can ‘know’ whether the
thermostatting is due to a Gaussian isokinetic thermo-
stat, a Nosé–Hoover thermostat [13], or whether (in
those remote walls) there is simply some material with a
very large heat capacity. In this way the Gaussian
isokinetic thermostat is a convenient but ultimately
irrelevant mathematical device.
On the other hand if the NEFETs are to be used in a

computer simulation to calculate free energy differences,
then an homogeneous Gaussian thermostat [13] pro-
vides an efficient and easy way to allow the thermo-
statted transition to occur.
Finally we point out that these NEFETs can easily be

generalized to handle other transitions (isoenergetic,
isobaric, etc.) In fact the two equilibrium end states do
not have to have common values for any thermody-
namic properties.
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