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Abstract

The Fluctuation Theorem (FT) gives an analytic expression for the probability, in a 

nonequilibrium system of finite size observed for a finite time, that the dissipative flux will 

flow in the reverse direction to that required by the Second Law of Thermodynamics.  In the 

present letter a Local version of the Fluctuation Theorem (LFT), is derived.  We find that in 

the case of planar Poiseuille flow of a Newtonian fluid between thermostatted walls, non-

equilibrium molecular dynamics simulation results support LFT.

PACS numbers: 05.20.-y, 05.70.Ln, 47.10.+g, 47.40.-n
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In 1993 Evans, Cohen and Morriss [1], gave a formula for the logarithm of the 

probability ratio that in a nonequilibrium steady state, the time averaged entropy production 

per unit volume, takes on a value σ( )t , to minus that value −σ( )t :  
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This formula has come to be known as the Fluctuation Theorem, FT.  Surprisingly perhaps, it 

is valid far from equilibrium in the nonlinear response regime [1].  In 1994, Evans and Searles 

[2-4], gave a derivation, similar to that given here, which considered transient, rather than 

steady state, nonequilibrium averages and employed the Liouville measure.  In 1995 

Gallavotti and Cohen [5], gave a proof of (1) for a nonequilibrium steady state, based on a 

Chaotic Hypothesis and employing the SRB measure. Other generalizations of FT have been 

recently been developed [6,7].

FT gives an analytic expression for the probability that, for a finite system and for 

a finite time, the dissipative flux flows in the reverse direction to that required by the Second 

Law of Thermodynamics.  It has been confirmed numerically [1-3, 7-10].

The generality of FT prompted Gallavotti to suggest in 1998 [11] that a local 

version of the theorem (LFT) might be valid, and recent studies have considered LFT [9, 12].  

For macroscopic systems, the probability of observing Second Law violations is, as predicted 

by FT, unobservably small.  If one wants to test FT using laboratory experiments (e.g. light 

scattering), a local version which applies to small subregions of a large macroscopic system 

would be extremely useful.  In the present Letter we derive a new LFT on the basis of 

arguments from linear irreversible thermodynamics.  We describe computer simulations 

which support the validity of LFT.

For an N-particle system in 3 Cartesian dimensions, with coordinates and 

momenta, { , ,.. , ,.. } ( , )q q q p p q p1 2 1N N ≡ ≡ ΓΓ .  The energy of the system is 

H p mi i
i

N

≡ +
=
∑ 2

1

2/ ( )Φ q where Φ(q ) is the interparticle potential energy which is a function of 

the coordinates of all of the particles, q .  In the presence of an external field iFe, where i is a 
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unit vector in the x-direction, the thermostatted equations of motion are taken to be,

˙ /q pi i im= ,    ˙ ( ) ( )p F q i pi i i e i ic F S= + − α ΓΓ , (2)

where, F q q qi i( ) ( ) /= − ∂∂Φ , ci =0,1, Si =0,1 so that S Ni W
i

N

=
=
∑

1

is the number of 

thermostatting particles, c Ni f
i

N

=
=
∑

1

the number of particles subject to the influence of Fe.  α  is 

the thermostat multiplier derived from Gauss’ Principle of Least Constraint in order to fix the 

total energy [13].  The thermostat multiplier is α = −J VF Ke W( ) /ΓΓ 2 , where 

K S p m N k T NW i i i
i
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W B W W W= ≡ ≡
=
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2 3 2 3 2/ / / β , and the dissipative flux, J, is defined,
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From previous work [3] we know that the Kawasaki-Lagrange form of N-particle distribution 

function, f t( , )ΓΓ , is, f t t ds J s VF f
t

W e( ( ), ) exp[ ( ) ] ( ( ), )ΓΓ ΓΓ= −∫0
0 0β  and from the Liouville 

equation [13] the change in the fine grained Gibbs entropy as a function of time is1 ,

S t k d f t f t S N k t tB w B( ) ( , ) ln[ ( , )] ( ) ( )= − = −∫ ΓΓ ΓΓ ΓΓ 0 3 α . (4)

We use the notation for a trajectory segment, ΓΓ( );s s t0 < < :  A t t ds A s
t

( ) ( ( ))≡ ∫1
0

ΓΓ .

Without loss of generality we assume that the initial t=0 ensemble is microcanonical.  

Since the dynamics is time reversible we know [2] that the logarithm of the ratio of 

probabilities,

ln
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( ) ( )
p J t
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W
W e W
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where βW

t

W WJ t t ds N J s K s( ) ( / ) ( ( )) / ( )≡ ∫1 3 2
0

ΓΓ .  Unlike (1), no lim
t→∞

 is required for this 

version of FT.  It is clear that the ratio, p p− + , of observing an anti-trajectory rather than a 

trajectory is given by the integrated form of FT (IFT),

p t
p t

N t tW
−

+
+

= −( )
( )

exp[ ( ) ]3 α , (6)

1  Note (4) is entirely consistent with thermodynamics: dS dt T dQ dt JVF T N kW e W W B/ ( / ) / /= = − =1 3 α .
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where ... + denotes an average over all transient trajectory segments for which α( )t  takes on 

a positive sign.  These formulae are extremely general and are even valid in the far from 

equilibrium nonlinear regime [1-4].  In the long time limit, averages over transient segments 

which originate from the initial equilibrium microcanonical ensemble approach those taken 

over nonequilibrium steady state segments.  Therefore (5, 6) are also true asymptotically,  

lim
t→∞

, in the nonequilibrium steady state.

FT and IFT are also valid for mixtures where different particles, i,j have different 

interparticle interactions.  For our present purposes it is convenient to consider a mixture that 

is segregated into fluid and solid particles and where the solid particles form planar walls with 

a normal which is orthogonal to the applied field, iFe.  We also assume that ci =1, Si =0 for all 

fluid particles, ci =0 for all wall particles and Si =1 for some wall particles far away from the 

fluid-solid interface - see Fig. 1.  The system under study is gravity-driven planar Poiseuille 

flow of a fluid between planar thermostatted walls.

We assume our inhomogeneous system satisfies local thermodynamic equilibrium.  

For lim
t→∞

 there is a balance between σ( )t , and the time averaged total entropy flux, JST

lim ( , ) lim ( , )
t

V
t

S

STd t d t
→∞ →∞∫ ∫= •r r S J rσ , (7)

where the volume V has an enclosing surface S with outward normal dS [13].  Dividing the 

entropy flux into the usual convective and diffusive components2, J u JST Ss= +ρ

= +ρu Js TQ / , where T is the local temperature, s the local entropy density and JQ is the heat 

flux vector, we see that the total irreversible entropy production in a sub-region [0, y1] (y=0 is 

the centre of the flow channel) is

˙( , )

( )
( ) ( )

( )S y A dy

J y
T y

y
A

J y
T y

y
Qy

Qy0 1 0

1

1

1=
∂

∂
=∫ . (8)

A is the cross sectional area across which the heat flows.  IFT for the fluid system [-y ,+y ]W W  

can be written using (6) as

2 Note that for our steady state geometry there are no contributions from the chemical potential and associated 
mass fluxes. 
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p t
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We note that the first equality in (9) does not refer at all to the thermostatting 

mechanism in the walls.  Instead it only refers to the local heat flux and local temperature in a 

fluid which obeys purely Newtonian mechanics (i.e. no thermostats).  Since the 

thermostatting particles may be arbirarily far from the fluid and since there is no way that the 

fluid particles can "know" exactly how the system is thermostatted at these distant walls, 

suggests a local FT (LFT),

lim
[ ( , )]

[ ( , )]
lim exp[ ( ( , ) ( , ))]

t

Qy

Qy
t Qy Qy

p J y t

p J y t
At J y t J y t
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±

= − − −
β

β
β β , (10)

and a local IFT (LIFT)3 

lim
( , )
( , )

lim exp[ ( ( , ) ( , ))] ( , )
t t Qy Qy L

p y t
p y t

At J y t J y t y t
→∞

−

+
→∞ +

±
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= − − − ≡β β φ . (11)

In deriving these equations we use the fact that AB A B O N= +. ( / )1  and that N is large.  For 

example in (11) errors of O n d
S

( / ( )1 ξ S∫ ) where ξ  is the correlation length in the fluid, are 

ignored. For a typical light scattering experiment these errors are insignificant, O(1/106 ).

By integrating the time averaged conservation equations of hydrodynamics the heat 

flux can be calculated as4 ,

lim ( , ) lim ( ' , ) ( ' , ) ' lim ( , ) ( ' , ) '
t

Qy
t

e

y

t
e

y

J y t F u y t n y t dy F u y t n y t dy
→∞ →∞ →∞

= −∫ ∫
0 0

. (12)

If the y coordinate extends to yW the second term vanishes and time averaging is not required 

when the entire system is ergostatted.

3 The general form of LFT is, lim

[ ( , )]

[ ( , )]
lim exp[ ( , ) ]

t

S

Q

S

Q
t

S

Q

p d t

p d t
d t t

→∞ →∞

− •

•
= − •

∫
∫ ∫

S J r

S J r
S J r

β

β
β .

4 Care is required in strongly inhomogeneous systems - see [14].
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An NEMD algorithm was developed where fluid particles interacted via Newtonian 

dynamics, and the walls not only removed viscous heat, but created drag.  The potential was 

chosen Φ( ) ( ) ( )( ) ( )q = + − −
<
∑φ φq c c qij
i j

i j spr ij1 1  with, φ( ) , /q q q qij ij ij ij= −( ) + ≤− −4 1 212 6 1 6

;φ( ) , /q qij ij= >0 21 6 , and polymer cross-links formed with φspr ij ijq kq( ) = − 2 .  k is a spring 

constant typical for a cross-linked polymer.  An initial polymer was constructed from an 

equilibrium fluid (φspr = 0) at a density n N V= =/ .0 8442  and temperature T = 0 722. .  All 

pairs of polymer particles with qij  ≤ 1.25 were "linked", forming a cross-linked polymer.  The 

polymer particles near the fluid-polymer interface evolved under Newtonian dynamics.  

However, particles in the ergostatting core of the polymer had their equations of motion 

supplemented by Gaussian forces which constrained to total momentum of these particles to 

be zero and the total energy of the system to be constant.  Details are described in [15].

In the simulations N=798, NF=320, NW=240; the unit cell was, L Lx z= = 6 718. , 

Ly = 20 154. .  An equilibration run of 5 105x  time steps was performed before production runs 

of 5-10x106 time steps (δt = 0 001. ).  The polymer region had a width Lpol = 12 , and under 3 

dimensional periodic boundary conditions, each polymer surface formed an interface for the 

single fluid channel.  The ergostatting core had a width Lerg = 6 - see Fig. 1.

We begin the discussion of the results with Fig.  1 where we show the average heat 

flux J yQy( ) across the channel for Fe = 0 01. .  Note that in the Newtonian polymer region, 

where ∂ ∂ =u yx / 0  and ci = 0 , J yQy( ) plateaus.  Also, as shown in the inset, the nearly 

constant temperature profile across the channel indicates that we are in the weak field linear 

response regime.

To test our expression (11), four different regions of increasing size, each symmetric 

about y=0, were used to calculate J yQy( )A/T: region 1 was y∈ [-.8,+.8] with its data shown as 

◊ in Fig. 2, 2 was y∈ [-1.6,+1.6] shown o, 4 was y∈ [-3.2,+3.2] shown ❏ 5 and 5 was y∈ [-

4.0,+4.0] shown ∆.  These regions are shown in Fig. 1.

We can examine the validity of LIFT (11) for the Fe = 0 01.  system as shown in Fig. 

2.  Each pair of curves (designated by open and closed symbols) corresponds to p p− +/  and 

5 To reduce clutter region 3 is not displayed.
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φL t( ) respectively, evaluated in the different regions, where the most rapidly decaying pair 

corresponds to the whole system (global IFT) then region 5, region 4, 2, and 1, the slowest 

decaying  region.  Those regions nearest the interface exhibit LIFT similar to the global IFT.   

LIFT for the central fluid regions (2 and 1) decay more slowly and approach zero entropy 

production at the center of the channel.  In each case the IFT (11), is confirmed at sufficiently 

long averaging times.

In conclustion we have derived a LFT, which is valid for natural systems in local 

thermodynamic equilibrium.  The theorem is valid for natural systems because although a 

mathematical device (Gaussian thermostat) is employed in order to create a nonequilibrium 

steady state, the region over which the theorem is applied is not subject to thermostatting.  

The thermostatting only occurs at remote thermal boundaries.

In the case of planar Poiseuille flow, we used hydrodynamic integration [14], (12) to 

calculate the local spontaneous entropy production and have verified numerically that sub-

regions obey LIFT.  We have thus shown that systems evolving under Newtonian mechanics 

(i.e. no thermostats), but in contact with a thermal reservoir obey LIFT, despite the fact that 

there is no explicit phase space compression in the region of the system under consideration.  

The thermostatting region can be made arbitrarily remote from the fluid.  This means 

that the mathematical details of the thermostatting mechanism cannot possibly affect the 

statistics of the entropy fluctuations in the fluid.  The thermostat we use is a convenient but 

ultimately irrelevant mathematical device.

In their original paper [1], Evans et al. pointed out in a footnote that FT can be derived 

from the linear response Green-Kubo (GK) relations together with the Central Limit Theorem 

applied to σ( )t{ } .  Since GK relations are independent of the thermostatting mechanism [13] 

it should come as no surprise that FT in the linear regime is robust with respect to the 

thermostatting mechanism.

Further work needs to be carried out to discover whether LFT and LIFT are valid in 

the nonlinear response regime.  This is difficult to test because in the nonlinear regime, the 

fluxes must be sufficiently strong to observe a nonlinear response but sufficiently weak that 
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reverse fluxes can be observed.

A version of (6) is known to be valid even for very small systems (N~8) [3].  It is not 

known whether LFT and LIFT (10, 11) are valid for similarly small systems.
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Fig.1 This two part figure shows at top, a randomly chosen, steady state snapshot of the 

atomic configuration of the system.  The shaded particles comprise the cross-linked polymer 

walls, the darkest of these particles are the thermostatting polymer particles.  The Newtonian 

fluid atoms are shown as white.  On the same y-scale, the bottom part of this figure shows the 

average heat flux JQy(y) for Fe = 0 01. .
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Fig.2. Compares p p− +/  and φL(t) for the 4 different regions.  The solid curves at the 

bottom show the global data for the system (9).
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