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Liouville Equation for N-particle distribution function
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Equation of motion of phase function
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N\ is called thephase space compressitactor. The formal solution of thequations
of motion,
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Response theory
Consider an initial equilibrium ensemble:
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Now employ abyson decomposition
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Substitute recursively,
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Equations of motion

N

Initial equilibrium distribution:

Heat Q, is removed by the thermostat to ensure the possibility 0
nonequilibrium steady state. J is called the dissipative flux. The
momenta appearing in the equations of motion are peculiar.

a is chosen to keep the peculiar kinetic energy, K, constant:

Gaussian ThermostatdQ
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Time dependent nonequilibrium distribution
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exp[—(iL + A)t]
= exp[—iLt]
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= exp[—J'; ds A(—s)] exp[-iLt] (11)

Substituting into the equation for the distribution function gives,

f(r,t)= exp[—I(; dsA(s)]exp[-BHy(-1)] (12)

For isokinetic equations of motion,

G, = +CF,

p; = F +DjFe —ap; (13)



From equations of motion,

dHo _ dH™ | dHy ™™

dt dt dt
= —J(I‘).Fe—ZKa (14)
and
N\ =3Na +O(1) (15)

This leads to the so-calledawasakiexpression for the nonequilibriudistribution
function,

f(r,t)= exp[—BI(;dsJ(—s)- F]f(I",0) (16)

We can use this to compute averages,
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d<B(t) > /dt = ~B[dI B(N)J(-t)* Ff(T,1)

= ~B[dr B(t)J(0)« Ff(I',0) (18)

Yielding theTransient Time Correlation Functicexpression for an average,

<B(t) >= ~BF, * [ds < I(O)B(s) > (19)

In the small field limit we can linearise both Kawasaki and TTCF givingl thear
Response formula
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Green-Kubo Relations for linear thermal Transport
Coefficients
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Self Diffusion coefficient
D=1r% 0
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Thermal Conductivity
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Shear Viscosity
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Bulk Viscosity
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NEMD Algorithms for Navier-Stokes transport
coefficients.

SLLOD algorithm for shear viscosity
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Pi = Fi ~iYPyi —APi \hich is equivalent tcd = % Yiyd(ty,  (25)
satisfies Al' and the dissipative flux is,f¥. The shear viscosity, is computed as,
t
1fods Py (9

n=-limlim=
y-0tooot Y

SLLOD algorithm for viscous flow

d; :%’fch * Lu
pi =F —p;j* Ou-ap; (26)

satisfies AI' and the dissipative flux BV.

Colour Conductivityalgorithm for self diffusion



y =Pi

o
m
pi =F —icF —a(p; —iciJ/p) (27)
where
1% ' %( icJ.. /p)?/m=3NkgT
Jx = ) CiX Pi —I1CiJ /P) /M= B
V& andfE (28)

satisfies AI' and the dissipative flux isM. The self diffusion coefficient,D,
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Evans Heat flow algorithm
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satisfies Al' and the dissipative flux iﬂ;QV

whereJ, is the heat flux vectcJqV = Z Zq,JF Pi.

The thermal conductivityh, can be computed,
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Note: NEMD algorithms and Green Kubo relations are also known for thermal and
mutual diffusion (Soret and Dufour effects) in non-ideal binary mixtures, and for the 12
or so viscosity coefficients of nematic liquid crystals.



Newton's Constitutive Relation
for Shear Flow

Drag force on top surfacEp=iPxyA = -inyA, wheren is the coefficient of shear viscosity.

Pxy is the force in the x-direction across a unit area whose normal is parallel to the y-axis.

ux(y)=yy

Utop
Area = A
Volume =V
-
X Strain ratey = uph, Shear stressxyP= Fp/A

Viscosity,n = Shear stress/strain rate

In aNewtonianfluid n is independent of.

Viscous heating = work done =
forcex velocity = Fp.Utop= Pxy.A.y.h = Ry.yV
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Shearing Periodic BoundaryConditions

Lees-Edwards Periodic Boungactonditions

relative velocity of cell layers = yL

—

primitive cell:

Ldy
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< \ minimum image
velosity = YL . cell of particle 1
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Lees-Edwards periodic boundary conditions are non-autonomous. The coordinates in
the primitive cell arensufficientto calculate trajectories or thermophysical phase
variables. For example the pressure tensor can be written.
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The motion of a unit cell of N particles under SLLOD dynamics but employing Lees-
Edwards periodic boundary conditionsjdenticalto the motion one would observe

for an infinite periodic array of particles evolving under SLLOD but without reference
to the boundary conditions. If the initial infinite system is periodic, SLLOD dynamics
will preserve that symmetry forever [1]. Lees-Edwards periodic boundary conditions
are the natural generalisation of periodic boundary conditions to shear flow.
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SLLOD algorithm for shear viscosity

G, =iy,

Pi =F =1YPyi =0Pi \yhich is equivalent tcgj; = % tiyd(t)y;  (25)

SLLOD changes an equilibrium distribution at t = 0-,

to a local equilibrium distribution.

Probability of Probability of
Vu(Y) Vu(Y)

Equilibrium att = 0" Local Equilibrium att=0%
with strain rate .

The SLLOD equations of motion (25) are equivalent to Newton'’s equations for,t > 0
with a linear shift applied to the initial x-velocities of the particles.



