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A new diagnostic that is useful for checking gigorithmic correctness of Mon@&arlo
computer programs is presented. The check is made by compariBgltiraann
temperature, which is input to the program and used to accept ormejees, with a

configurational temperatuk,T, . = ‘Ellqdb‘z/lillﬁw. Here, @ is the potential energy of

nig
the system aniJ, represents the dimensionless gradient operator with respect to the
particle position:qg. We show, using aimulation of Lennard-Jones particles, that the
configurational temperature rapidind accuratelytracks changes made to thmput
temperatur@ven when the system is not in glol@rmodynamic equilibrium. Coding
and/oralgorithmicerrors can beetected by checking thise inputtemperaturand T,

agree. The effects of system size and continuity a@hd its firstderivative onT,

config

are

also discussed.

*Contribution of the National Institute ddtandards and@echnology, not subject to copyright in the

U.S.A.
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1. INTRODUCTION

When we perfornmolecular dynamics (MD) computsimulations, the constants of the
motion provide useful checks on algorithm validity. Whike conservation of
momentum and energy do rgiiaranteethe validity of a particular computer program,
the vastmajority of random programmingnd algorithmic errors violatethese
conservationaws and so can easily baetected. Monte Carlo (MCyomputer
simulations, however, do not consermementum or energy, so there &re checks
availablefor algorithm validation. In isothermal-isoba(ldPT) MC, theaverage output
pressure P, computed from the virial, can be compared to the specifiearaheit
Likewise, in grand canonicaly T) MC, particle insertion methods can losed to
compute thechemical potentigh. However, forcanonical (NVT)MC, there is no
obvious corresponding check on teenperature TThis is because there has been no
method of computing thhemperatursolely fromconfigurational information. Thesze,
therefore, fewobjective criteridor algorithm validation in theanonicakensemble.This
can be particularly troublesomavhen a new system is beingtudied and the
thermodynamic properties at particular statents cannot be compared pablished

values.

In this paper, we derive an expressifor the temperaturepasedentirely on
configurational informationfrom fundamental thermodynamic principles.This
configurational temperaturecan be compared tothe inputtemperature in MC

simulations to check the thermodynamic consistency of the computer program.

2. MATHEMATICAL FORMALISM
In this section, we derive an expressifon the temperaturdased entirely on the
configurations of particles in a simulatiand knowledge of thénteractionpotential.

The derivation is analogous to one Byxghl for the normatemperatur@, exceptthat
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here, only theonfigurational part of the energy in thestem (not th&inetic) isused in
the expression. From elementary thermodynamics, we have

dE = TdS- paV O %=$V : (1)
implying that acalculation ofthe change in the entropy, brought about bysaohoric
energy change, will yield theemperature. We denotke phase space vector by
I =(dy,....dy, Py, Py ) Whereqy is the position coordinate @articleN and p, is its
momentum. We defineraicrocanonical ensemb(BVE) for a givenHamiltonian H(I")
by the set of phase points, denc uC(E), whose energies lie betwe Exand E + JE,
where|dE| << E, with Boltzmann’s equa priori probability assumption. Thentropy

of this ensemble is related to its phase space volume via the relation,

S(E) = ks In(V; (E,N,V)) = kg In fdr. 2)
HC(E)
Suppose we displace the phase pchisf our NVE ensemble to the poirl’’ by the
transformation
0 H(F)

FO = G RO m

AE (3)

where AE represents a change in energy of the systenl, =d/dq;,...,d/dq, is the
configurational gradient of thehase space. Thiat we move from one hypersurface to
another along a vector

0,H(Ir)

n(r) -

T OH(r)m ! @

where only theonfigurational components tfie Hamiltonian are considered. it

3 9/15/98



order in AE, this displacementauses @onstantchange in energyndependent of the
initial phase space vectl' OuC(E). Thus, the set aoflisplaced phase pointsave
energy, E+ AE+O(AE)2. For our phase spadisplacementthe Jacobian can be

evaluated as

ar'(r)
ar

J(r) :‘ ‘ =1+0, h(r)AE, (5)

wherel; =d/dq,,...,0/0q,,0/0p,,...,0 / 0p,, IS the phase space gradient operator.

The entropy of the NV(EAE) microcanonical ensemble is

SE+AE)=kyIn  [dr=k,In [I(N)dr . (6)

HC(E+AE) HC(E)

Combining (1), (5), and (6), the temperatlins

ull,

= k(O 0(T"))._. )

\

1
T
Substituting foin(I") gives

0 2
1 _ 0 u,® _ 0, ® +oDiD ®
KsT. ‘ ? ®/ TONDO
B "config qucb‘ ‘Eﬂq(b‘

By the equivalence of ensembld®r sufficiently largeN, (8) will be valid in the

canonical ensemble and other ensembles.

We now consider thapplication of(8) to Monte-Carlo simulations.For sufficiently
largeN, we can estimate trmnfigurational temperatufeom a singleconfigurational
snap-shot without employing ensemble averaging. If the parintéFactvia apairwize

additive potential
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q)zi U, (9)

FZ
kBTconfig = N = ’ (10)
_Z |]r [H:I]
=1 j#i !
where,
ou.
F=)F=- — (11)
IE3] J#1 d'ij

is the total force acting gparticlei andr; is the vector separation between particlesd

j. Unlike the input temperature, there will bstatistical uncertainty i T_,;, from (10),

nfig
but this can be improved by averaging the results from several snap-shotevaken
times where the configurations arecorrelated or by increasing the numbepaiticles

in the simulation.

3. RESULTS
3.1 Equilibration of T

nfig

Our derivation of the configuratione@mperatur T

config

is based orequilibriumstatistical
mechanics. The derivation assumes that at constant energy, phase spéoceniy
occupied. Itis not obvious whether tenfigurational temperature so derivess any
meaning forthermodynamically metastable anstable states where the eqagpriori
probability assumptioias broken down. Texamine this we performédonte-Carlo

simulations of a two-dimensiongystem that is quenched deep inside ghs/solid
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coexistenceegion. For a londime after the quench, adecomposition proceeds, the

system isnotin thermodynamic equilibrium.

The system consisted of a large numb&r50 000, ofparticles interacting through the

Lennard-Jones potential

O
E (12)

The Monte-Carlo simulationvas performed in thecanonical ensemble, at density
p=N/A=0.35, with the potential truncated r; =6. The system wasquilibrated at
T =1 (well above theritical temperaturegnd then quenched deep inside¢bexistence
region to T=0.1. Subsequently itwas reheated toT =1.  The instantaneous
configurational temperatu(&g. (10)) wasomputed once every Hitemptednoves per
particle (thatis, every 10 MC steps) along with tleenfigurational energ E, and

pressurd’. Results are shown in Fig. 1.

T

config?

E., andP show nearlyimmediateresponses to the initi@mperature quench.
Because the quench is into theexistenceegion, the system igitially far from
equilibrium, and it takes a large numbemddnte-Carlo movedor thermodynamidree
energies to equilibrate. FigureshowsthatP and E_ have not reached their asymptotic,
equilibrium values even 500€ieps after the quench. Somewhat surprisingly, Figure 1

does show theT_, ., equilibrates almostnmediatelyand is nearly indistinguishalfi®m

config

the inputtemperature aftesnly ~200 MCsteps. In contrastto the pressiT_ .. relaxes

config

monotonicallyafter thetemperaturguenches. Upomeheating toT =1, we see a

similarly rapid equilibration o T,

config

relative to that othe pressure and energy. Itlear

from this work thathermodynamic equilibrium isot a necessary condition fT__ . to

conflg

be equal to the inpuemperaturesed in aMonte-Carlo program to generaté/farkov
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chain.

When we compare the relatieguilibration rates wéind that those phaskinctions
which depend on the highest derivatives of ghtential relaxastest to theiequilibrium

values. Hence the order oflaxation ratess: T

config

is faster tharP, which in turn

equilibrates faster the E_.

3.2 Effect of simple coding errors

To test the sensitivity o' T_,;, to programing or algorithmrrors, the MC routine that is

nfig
used todetermine a trial movfom a uniform distribution on the intervpll,1] was
altered to return uniform random deviates[€h5,1.5] instead. Attemptednoves are
thus biased toward the positive x and y directiaaslating the rule ofmicroscopic
reversibility necessary to generate an irreducible Markov §1a¢rgain, thesimulation
was performed on a 2D Lennard-Jor®sstem, like that described in tlpeevious
section, withN = 50000, at a reduced temperature T =1. This time, T, did not
agree with the inpuemperaturéut instead yielded a value 8f9693+ 0.0002 — not far

from the inputtemperaturdut clearly statistically differenfrom 1. Thisparticular

f

programing error was thus easily detected from a computat T,
Such an obvious mistake would probably noebeountered in practice, bother,more
subtle errors that alsaolate microscopic reversibility may lemcountered — particularly

in complex MC computearograms. These are also the kind of errors that are perhaps the

most difficult to detect.
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3.3 Effect of system size
Since terms of ordel/N were neglected in the derivation &§. (10)f1 the effect of

system size on the behavior T__ .. was also studied. The same 2D MC simulation, at

config

T =1, was performed, and the numberpafticleswas varied from 50 to 100 0@¢hile

the density was kept fixecT

config

wascomputed from (10) once every 10 MC steps and
the values from many of these ‘independent’ configurations were averageaurhber
of configurationswas chosen so that thetatistical uncertainty inthe estimated
temperature§~0.02%) wadndependentoN. The resultis shown in Fig. 2. Here, the
uncertainties are smaller than the plotsygnbols. For thearticular state poirthosen,

itis clear thaT

config

Is always less than the input temperature. The discrepaabpus
8% for a systencontaining 50 particles, bldss than 0.2% for one with 20@@rticles.

This is consistent with the omission1/N terms from (10).

3.4 Discontinuities in the potential

In ourderivation of the expressidar T

config ?

we assumed that tpetentialfunction, and
its first derivative with respect to the phase space coordinates, are contiriues
discontinuities argresent, the derivation yieldirigg. (10) above iscorrect, andhus
should not be used. This is obvious when one considers the cassjoéra-well
potential. Here, aderivation that includes the effects on toafigurationatemperature
when aparticlecrosses the square-well barrier would be needed. Thisimpantant
point since discontinuities are often presentin simulations of system&casttmuous”
potentials. Pair potentials are normally truncated and/or shiftu, (rcut) =0 at some
cut-off distance tosave computationatesources. In Lennard-Jonsgstems, for
example, this cutoff is commonly made at 2.5 particle diameters.

To demonstratthis, theeffect that this cutoff distance has T was tested for the

config

same Lennard-Jones system describieolve, except that theotential function was
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truncated ar; =2.5 and then shifted so that its value vu; =0 atr; =2.5 (a shift of
approximately1.6% of the well depth). Thaotential function ishus continuous, but its

first derivative isnot. In this testT

config

wascomputed to b®.9981+ 0.0004 rathethan

the inputtemperature oT =1. This shows theT,

onfig

is sensitive to everelatively

minor errors or approximations in the simulation algorithm.

4. CONCLUSION

We have shown how a newxpressionfor the temperaturepasedentirely on
configurational rather than kinetic information, canused to check that titemperature
generated within a Mont€arlo simulation actually matchethe specifiedinput
temperature. Althouglour derivation of the expressionfor the configurational
temperature relies on thermodynamic equilibrium, thermodynamic equilibrinot ia
necessary conditiofor the calculated configurational temperature to matod input
temperaturaised togenerate a Markov chain in Monte Carlo simulations. The
configurational temperature relaxepidly. Checking the consistency betweenvhlee
of the internal energy, and the fidstrivative of the potential energy (required the
estimation of the configurational temperatureprovides a sensitive diagnostic for
programingand algorithmicerrors. Thisconsistency is analogous tihe energy
conservation diagnostic employBt MD simulations except that diagnostéeguires
dynamic (rather thanhermodynamic) consistency betweie energy and thérst

derivative of the potential energy.
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Figure Captions:

Figure 1. (a) Theonfigurational temperaturéy) pressure , and (cpnfigurational
energy, for a system gfarticles quenched froi'T =1to T = 0.1 and thenmeheated (see

text). Note thaT

config

tracks the MQemperature rapidlgven thougl P and E_ indicate

that the system is still far from equilibrium.

Figure 2. The effect of system size T_ . computed froniEq. (10). Theaemperature

config

input to the MC simulationin this casas T =1. The difference between themputed

T

config

and the input temperature is proportional 4.1/
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Figure 1: (a) Theonfigurational temperaturéy) pressure , and (cpnfigurational
energy, for a system gfarticles quenched fro'T =1to T =0.1 and thenreheated (see

text). Note thaT,,, tracks the MGemperature rapidigven thougl P and E_ indicate

onfig

that the system is still far from equilibrium.
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Figure 2: The effect of system size T, computed froniq. (10). Theemperature
input to the MC simulation in this casgas T =1. The difference between tbemputed

T

config

and the input temperature is proportional 19.1/
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