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A new diagnostic that is useful for checking the algorithmic correctness of Monte Carlo

computer programs is presented.  The check is made by comparing the Boltzmann

temperature, which is input to the program and used to accept or reject moves, with a

configurational temperature k TB config = ∇∇ ∇∇q qΦ Φ
2 2 .  Here, Φ is the potential energy of

the system and ∇∇q represents the dimensionless gradient operator with respect to the

particle positions q .  We show, using a simulation of Lennard-Jones particles, that the

configurational temperature rapidly and accurately tracks changes made to the input

temperature even when the system is not in global thermodynamic equilibrium.  Coding

and/or algorithmic errors can be detected by checking that the input temperature and Tconfig

agree.  The effects of system size and continuity of Φ and its first derivative on Tconfig are

also discussed.

*Contribution of the National Institute of Standards and Technology, not subject to copyright in the

U.S.A.
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1. INTRODUCTION

When we perform molecular dynamics (MD) computer simulations, the constants of the

motion provide useful checks on algorithm validity.  While the conservation of

momentum and energy do not guaranteethe validity of a particular computer program,

the vast majority of random programming and algorithmic errors violate these

conservation laws and so can easily be detected.  Monte Carlo (MC) computer

simulations, however, do not conserve momentum or energy, so there are few checks

available for algorithm validation.  In isothermal-isobaric (NPT) MC, the average output

pressure P, computed from the virial, can be compared to the specified input value.

Likewise, in grand canonical (µVT) MC, particle insertion methods can be used to

compute the chemical potential µ .  However, for canonical (NVT) MC, there is no

obvious corresponding check on the temperature T. This is because there has been no

method of computing the temperature solely from configurational information.  There are,

therefore, few objective criteria for algorithm validation in the canonical ensemble.  This

can be particularly troublesome when a new system is being studied and the

thermodynamic properties at particular state points cannot be compared to published

values.

In this paper, we derive an expression for the temperature, based entirely on

configurational information, from fundamental thermodynamic principles.  This

configurational temperaturecan be compared to the input temperature in MC

simulations to check the thermodynamic consistency of the computer program.

2.  MATHEMATICAL FORMALISM

In this section, we derive an expression for the temperature based entirely on the

configurations of particles in a simulation and knowledge of the interaction potential.

The derivation is analogous to one by Rugh1 for the normal temperature,2 except that
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here, only the configurational part of the energy in the system (not the kinetic) is used in

the expression.  From elementary thermodynamics, we have

dE TdS pdV
T

S

E V

= − ⇒ = ∂
∂

1
,                                     (1)

implying that a calculation of the change in the entropy, brought about by an isochoric

energy change, will yield the temperature.  We denote the phase space vector by

ΓΓ ≡ ( )q q p p1 1,..., , ,...,N N where qN is the position coordinate of particle N and pN is its

momentum.  We define a microcanonical ensemble (NVE) for a given Hamiltonian H( )ΓΓ

by the set of phase points, denoted µC E( ) , whose energies lie between E and E E+ δ ,

where δE E<< , with Boltzmann’s equal a priori probability assumption. The entropy

of this ensemble is related to its phase space volume via the relation,

S E k V E N V k dB B
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.                                (2)

Suppose we displace the phase points ΓΓ of our NVE ensemble to the points ′ΓΓ by the

transformation
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where ∆E represents a change in energy of the system and ∇∇q q q= ∂ ∂ ∂ ∂1,..., N is the

configurational gradient of the phase space.  That is, we move from one hypersurface to

another along a vector

n q

q q

ΓΓ
∇∇ ΓΓ

∇∇ ΓΓ ∇∇ ΓΓ
( ) =

( )
( ) ⋅ ( )

H

H H
,                                      (4)

where only the configurational components of the Hamiltonian are considered.  To first
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order in ∆E , this displacement causes a constantchange in energy, independent of the

initial phase space vector ΓΓ ∈µC E( ).  Thus, the set of displaced phase points have

energy, E+ ∆E+O(∆E )2.  For our phase space displacement, the Jacobian can be

evaluated as 

J EΓΓ ΓΓ ΓΓ
ΓΓ

∇∇ ΓΓ( ) = ′( ) = + ⋅ ( )∂
∂

1 q n ∆ ,                                   (5)

where ∇∇ΓΓ ≡ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂/ ,..., / , / ,..., /q q p p1 1N N is the phase space gradient operator. 

The entropy of the NV(E+∆E) microcanonical ensemble is

S E E k d k J dB

C E E

B

C E

( ) ln ln ( )
( ) ( )

+ = =
+
∫ ∫∆

∆

ΓΓ ΓΓ ΓΓ
µ µ

.                              (6)

Combining (1), (5), and (6), the temperature T is

1
T
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E
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V
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∂

∇∇ ΓΓq n .                                         (7)

Substituting for n ΓΓ( ) gives
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By the equivalence of ensembles, for sufficiently large N, (8) will be valid in the

canonical ensemble and other ensembles.

We now consider the application of (8) to Monte-Carlo simulations.  For sufficiently

large N, we can estimate the configurational temperature from a single configurational

snap-shot without employing ensemble averaging.  If the particles interact via a pairwize

additive potential
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the configurational temperature (to leading order in N) is
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where,

F Fi ij
ij

ijj ij i

u
= = −

≠≠
∑∑ ∂

∂r
(11) 

is the total force acting on particle i and rij is the vector separation between particles i and

j .  Unlike the input temperature, there will be a statistical uncertainty in Tconfig from (10),

but this can be improved by averaging the results from several snap-shots taken over

times where the configurations are uncorrelated or by increasing the number of particles

in the simulation.

3.  RESULTS

3.1 Equilibration of Tconfig

Our derivation of the configurational temperature Tconfig is based on equilibriumstatistical

mechanics.  The derivation assumes that at constant energy, phase space is uniformly

occupied.  It is not obvious whether the configurational temperature so derived has any

meaning for thermodynamically metastable or unstable states where the equal a priori

probability assumption has broken down.  To examine this we performed Monte-Carlo

simulations of a two-dimensional system that is quenched deep inside the gas/solid
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coexistence region. For a long time after the quench, as decomposition proceeds, the

system is not in thermodynamic equilibrium.  

The system consisted of a large number, N=50 000, of particles interacting through the

Lennard-Jones potential

u
r rij
ij ij

= −






4

1 1
12 6 .                                              (12)

The Monte-Carlo simulation was performed in the canonical ensemble, at a density

ρ = =N A 0 35. , with the potential truncated at rij = 6 .  The system was equilibrated at

T = 1 (well above the critical temperature) and then quenched deep inside the coexistence

region to T = 0 1. . Subsequently it was reheated to T = 1.  The instantaneous

configurational temperature (Eq. (10)) was computed once every 10 attempted moves per

particle (that is, every 10 MC steps) along with the configurational energy Ec and

pressure P.  Results are shown in Fig. 1.

Tconfig , Ec , and P show nearly immediate responses to the initial temperature quench.

Because the quench is into the coexistence region, the system is initially far from

equilibrium, and it takes a large number of Monte-Carlo moves for thermodynamic free

energies to equilibrate.  Figure 1 shows that P and Ec have not reached their asymptotic,

equilibrium values even 5000steps after the quench. Somewhat surprisingly, Figure 1

does show that Tconfig equilibrates almost immediately and is nearly indistinguishable from

the input temperature after only ~200 MC steps.  In contrast to the pressure, Tconfig relaxes

monotonically after the temperature quenches.  Upon reheating to T = 1, we see a

similarly rapid equilibration of Tconfig relative to that of the pressure and energy.  It is clear

from this work that thermodynamic equilibrium is not a necessary condition for Tconfig to

be equal to the input temperature used in a Monte-Carlo program to generate a Markov
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chain.

When we compare the relative equilibration rates we find that those phase functions

which depend on the highest derivatives of the potential relax fastest to their equilibrium

values.  Hence the order of relaxation rates is: Tconfig is faster than P, which in turn

equilibrates faster than Ec .

3.2 Effect of simple coding errors

To test the sensitivity of  Tconfig to programing or algorithm errors, the MC routine that is

used to determine a trial move from a uniform distribution on the interval [-1,1] was

altered to return uniform random deviates on [-0.5,1.5] instead.  Attempted moves are

thus biased toward the positive x and y directions, violating the rule of microscopic

reversibility necessary to generate an irreducible Markov chain.3 Again, the simulation

was performed on a 2D Lennard-Jones system, like that described in the previous

section, with N = 50000 , at a reduced temperature of T = 1.  This time, Tconfig did not

agree with the input temperature but instead yielded a value of 0.9693± 0.0002 – not far

from the input temperature but clearly statistically different from 1.  This particular

programing error was thus easily detected from a computation of Tconfig .

Such an obvious mistake would probably not be encountered in practice, but other, more

subtle errors that also violate microscopic reversibility may be encountered – particularly

in complex MC computer programs.  These are also the kind of errors that are perhaps the

most difficult to detect.
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3.3 Effect of system size

Since terms of order 1 N were neglected in the derivation of Eq. (10),4 the effect of

system size on the behavior of Tconfig was also studied.  The same 2D MC simulation, at

T = 1, was performed, and the number of particles was varied from 50 to 100 000 while

the density was kept fixed.  Tconfig was computed from (10) once every 10 MC steps and

the values from many of these ‘independent’ configurations were averaged.  The number

of configurations was chosen so that the statistical uncertainty in the estimated

temperatures (~0.02%) was independent of N.  The result is shown in Fig. 2.  Here, the

uncertainties are smaller than the plotting symbols.  For the particular state point chosen,

it is clear that Tconfig is always less than the input temperature.  The discrepancy is about

8% for a system containing 50 particles, but less than 0.2% for one with 2000 particles.

This is consistent with the omission of 1 N terms from (10).

3.4  Discontinuities in the potential

In our derivation of the expression for Tconfig , we assumed that the potential function, and

its first derivative with respect to the phase space coordinates, are continuous.  When

discontinuities are present, the derivation yielding Eq. (10) above is incorrect, and thus

should not be used.  This is obvious when one considers the case of a square-well

potential.  Here, a derivation that includes the effects on the configurational temperature

when a particle crosses the square-well barrier would be needed.  This is an important

point since discontinuities are often present in simulations of systems with “continuous”

potentials.  Pair potentials are normally truncated and/or shifted to u rij cut( ) = 0 at some

cut-off distance to save computational resources.  In Lennard-Jones systems, for

example, this cutoff is commonly made at 2.5 particle diameters.  

To demonstrate this, the effect that this cutoff distance has on Tconfig was tested for the

same Lennard-Jones system described above, except that the potential function was
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truncated at rij = 2 5. and then shifted so that its value was uij = 0 at rij = 2 5. (a shift of

approximately 1.6% of the well depth).  The potential function is thus continuous, but its

first derivative is not.  In this test, Tconfig was computed to be 0.9981± 0.0004 rather than

the input temperature of T = 1.  This shows that Tconfig is sensitive to even relatively

minor errors or approximations in the simulation algorithm.  

4. CONCLUSION

We have shown how a new expression for the temperature, based entirely on

configurational rather than kinetic information, can be used to check that the temperature

generated within a Monte Carlo simulation actually matches the specified input

temperature. Although our derivation of the expression for the configurational

temperature relies on thermodynamic equilibrium, thermodynamic equilibrium is not a

necessary condition for the calculated configurational temperature to match the input

temperature used to generate a Markov chain in Monte Carlo simulations. The

configurational temperature relaxes rapidly.  Checking the consistency between the value

of the internal energy, and the first derivative of the potential energy (required for the

estimation of the configurational temperature), provides a sensitive diagnostic for

programing and algorithmic errors.  This consistency is analogous to the energy

conservation diagnostic employed for MD simulations except that diagnostic requires

dynamic (rather than thermodynamic) consistency between the energy and the first

derivative of the potential energy.
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Figure Captions:

Figure 1:  (a) The configurational temperature, (b) pressure , and (c) configurational

energy, for a system of particles quenched from T = 1 to T = 0 1. and then reheated (see

text).  Note that Tconfig tracks the MC temperature rapidly even though P and Ec indicate

that the system is still far from equilibrium.

Figure 2:  The effect of system size on Tconfig computed from Eq. (10).  The temperature

input to the MC simulation in this case was T = 1.  The difference between the computed

Tconfig and the input temperature is proportional to 1/N.
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Figure 1:  (a) The configurational temperature, (b) pressure , and (c) configurational

energy, for a system of particles quenched from T = 1 to T = 0 1. and then reheated (see

text).  Note that Tconfig tracks the MC temperature rapidly even though P and Ec indicate

that the system is still far from equilibrium.
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Figure 2:  The effect of system size on Tconfig computed from Eq. (10).  The temperature

input to the MC simulation in this case was T = 1.  The difference between the computed

Tconfig and the input temperature is proportional to 1/N.
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